
Image processing with C /C++

Marc Schlipsing∗ and Jan Salmen†

Research group: Real-time Computer Vision (RTCV)
Institut für Neuroinformatik, Ruhr-Universität Bochum

version 2

November 15, 2017

Preface

This tutorial is directed towards students that are not familiar with image processing
or C/C++. Part I introduces some basic images processing techniques, it explains
how to handle digital images and perform basic operations. Part II covers advanced

programming teqchniques related to the programming language C++. The two parts do
not depend on each other.

For both parts of the tutorial, example code is provided and explained in detail. Addi-
tional exercises are left for you so that you can apply practically what you have learned
and deepen your knowledge.

Additional image processing and computer vision techniques can be found in lecture
notes [Win09]. For any further information concerning programming techniques we
refer to [Cli, BBRS].

If you have any comments or suggestions concerning this tutorial, do not hesitate to
contact us!

∗marc.schlipsing@ini.rub.de
†jan.salmen@ini.rub.de

1

Contents

I. Basic techniques 3

1. Introduction 3

2. Image representation in memory and function calls 3

3. Accessing an image 4

4. Filtering 6

5. Histograms and image enhancement 8

6. Gradients, energy, and segmentation 9

7. Color images 11

8. Final remarks 14

9. Example program code 16

10.Exercises 19

II. Advanced programming techniques 20

11.Introduction 20

12.A new template class 20

13.Using our new class 24

14.Example program code 25

15.Exercises 27

2

Part I.
Basic techniques

1. Introduction

The first part of our tutorial will follow the example code from a demo program available
with this script. Once a new issue comes up in the code it will be addressed, so that
this document is ordered by the image operations implemented in the code and not by
C++ programming topics.

In order to make sure you learn anything new from this tutorial you might want to have
a look at the example code first (see section 9). This code will be discussed chunk by
chunk in the oncoming sections.

2. Image representation in memory and function calls

In general, two-dimensional images are stored in a linear memory buffer, so that all
image rows are placed in memory consecutively. Depending on the size of the image
and the bit-resolution for each pixel one will need to allocate an adequate amount of
memory. The position of the image in memory is stored in a pointer which refers to the
first pixel. In the case of an 8-bit gray-value image one may use a pointer of the unsigned
8-bit type. Beginning with the main(), in line 64 we create a pointer and initialize it
with 0.

unsigned char ∗ pImage = 0 ;

We call the previously defined function

bool readPGM(const char ∗ f i leName , unsigned char ∗∗ ppData , int & width , int & he i gh t)

to receive an image from a .pgm-file. Given a file name, the method will try opening
the file, allocate the right amount of memory, return the image position by setting our
pointer pImage and the size parameters. This call shows two ways in which a function
can write on the input parameters. For the memory position we pass the address to our
pointer. The sizes width and height are handed over by-reference. In both cases one
can write the outside variable from inside the function.

int width , he i gh t ;
bool readOk = readPGM(” eyes dark .pgm” , &pImage , width , he i gh t) ;

You might want to take a look at the implementation of this function in PpmIO.h. It uses
realloc() (similar to malloc()) to adjust the amount of memory allocated at pImage.
Passing the address of the pointer enables the function to write the memory location to
pImage, otherwise it would only receive a copy of the pointer.

3

If we want to avoid writing external parameters from within a function one could either
use a constant reference (const int & width) that does not allow writing or a call-

by-value (int width) where the parameter is given as a local copy. Be aware that the
last case may produce unintended overhead, especially when passing complex objects
(e. g. vectors, lists). If you do not have special requirements, use constant reference for
parameters of complex objects (not built-in types).

After checking the return value we can start working with the image data. If the im-
age was not read properly we report to the console and exit. The boolean expression
(! readOk) is the same as (false == readOk).

i f (! readOk)
{

p r i n t f (”Reading image f a i l e d !\n”) ;
p r i n t f (”Press any key to ex i t .\n”) ;
getchar () ;
return −1;

}

The image we work with in this example is shown in figure 1.

Figure 1: The image loaded from eyes dark.pgm.

3. Accessing an image

How to access and manipulate image pixels is demonstrated by an easy example of
scaling down our image to the half width and half height of the original. Therefor we
pre-compute the new image sizes widthScl and heightScl.

const int widthScl = width / 2 ;
const int he igh tSc l = he i gh t / 2 ;

There are two interesting things here: First, we declare these two new variables to be
const in order to make clear we do not want the value to be changed, which is ensured by
the compiler. Using const for constants makes your code easier to read and understand
by others and will avoid errors. Second, the operator / represents an integer division

4

here because all values involved are of type int. The result of an integer division a/b is
⌊a/b⌋, for instance, 1/2 = 0. So be careful! The remainder can be received from a%b.

As we calculated the size for the scaled image, we can now define a new pointer variable
and directly allocate memory using new (line 83).

unsigned char ∗ pScaledImage = new unsigned char [widthScl ∗ he igh tSc l] ;

The scaled image is calculated by simply copying every second pixel from every second
row of the original image to the new one. This is the easiest and fastest possible way to
do the desired scaling. Although it does not yield the best possible results, it allows to
show nicely how image pixels are accessed.

for (int y = 0 ; y < he i gh tSc l ; y++)
{

for (int x = 0; x < widthScl ; x++)
{

pScaledImage [x + y∗widthScl] = pImage [2∗x + 2∗y∗width] ;
}

}

We see that a nested for loop is used to process the images. We iterate over the pixels of
our new scaled image row by row (outer loop) and pixel by pixel inside each row (inner
loop). As mentioned in section 2, the image is stored in a linear memory buffer. There-
fore, the pixel at position (x, y) is located at the linear position x + y · widthScl. This
index calculated in line 89 can be used to address the pixel relative to pScaledImage

(pointing at the beginning of the image) using the [] operator. To illustrate this fur-
ther: pScaledImage[0] is the value of the first pixel (which is an unsigned char in this
example), pScaledImage[1] the second, and pScaledImage[100] the 101st pixel value.
You could even use negative indices inside the brackets to access values prior to a pointer.
Nevertheless, you have to ensure that the memory you are reading or writing was allo-
cated for you. In this example, we can safely use values from pScaledImage[0] (x = 0,
y = 0, pixel in the upper left corner) up to pScaledImage[widthScl * heightScl -

1] (x = widthScl − 1, y = heightScl − 1, pixel in the lower right corner). In order to
do the desired rescaling, we access every second pixel in the original image in a similar
way.

(a) (b)

Figure 2: (a) Image scaled by 0.5 (b) after smoothing filter.

5

4. Filtering

The scaled image may look hard-edged or grainy. We can make use of a popular smooth-

ing filter to improve this: The Gaussian filter performs a convolution using weights ap-
proximating a 2-dimensional Gaussian (bell-shaped) distribution. This function is called
in line 98, passing the image pointer and size. Note that the function will overwrite the
original image.

f i l t e rGaus s i a n3x3 (pScaledImage , widthScl , h e i gh tSc l) ;

The implementation of the algorithm (see lines 43–56) make use of the separability of
the filter kernel.

1

16

1 2 1
2 4 2
1 2 1

 =
1

4

1
2
1

 · 1
4

(

1 2 1
)

Generally, it is more efficient to filter in vertical direction first followed by a horizontal
filtering on the result. But what does filtering actually mean in this context? Each
pixel here is assigned a new value depending on its neighborhood (3 × 3 here). A
filter matrix defines that linear calculation. It contains a weight mask for all pixels in
the neighborhood. The resulting weighted sum is assigned to the center pixel. Other
popular filter masks follow:

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
25

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

−1 −1 −1
−1 9 −1
−1 −1 −1

1 2 1
0 0 0
−1 −2 −1

3×3 mean filter
(blurring)

5×5 mean filter (blur-
ring)

3×3 sharpen
3×3 Sobel edge filter
(vertical component)

In section 6, we will see some more examples for filtering. Back to our code example. In
filterGauss3x3 temporary image memory is allocated for storing intermediate results
first.

unsigned char ∗ pFltY = new unsigned char [width ∗ he i gh t] ;

Then, the subroutine filterGauss1x3 is called. It processes the image pixel-wise, start-
ing in the second and ending in the before-last row. This is managed by the outer loop:

for (int y = 1 ; y < height −1; ++y)
{

. . .
}

The implementation calculates two new pointers (i.e. positions in memory) pDst and
pSrc in each iteration of the loop:

6

unsigned char ∗ pDst = pImgDst + y ∗ width ;
const unsigned char ∗ pSrc = pImgSrc + y ∗ width ;

The so called pointer arithmetic is an important issue in C. Starting at pImgDst we add
an integer value y * width, resulting again in a pointer, pDst specifying the (y ·width)-
th element position behind pDst. This is the first pixel in image row y. Thus, we are
in line 1 ≤ y < height − 1 and defined pointers to the first values in these rows in both
the input and the output image. The inner loop calculates the filtered response for each
pixel within the current row (y):

for (int x = 0 ; x < width ; ++x)
{

const unsigned int sum = (int) pSrc[−width] + 2∗(int) pSrc [0] + (int) pSrc [width] ;
∗pDst = sum / 4 ;
++pDst ;
++pSrc ;

}

Again, we make use of value access by index here. As we know that there is always
at least one image row above and below the current pixel (this is why the outer loop
was written that way), it is safe to access pSrc[-width] and pSrc[width] here. These
are the pixel values from adjacent rows that are needed for the filter response. Note
that we cast the values to int, as the unsigned char domain is exceeded during the
computations made (e.g., negative values). The resulting value sum is divided by 4 (one
could also use a shift operation here) and assigned to the destination pixel, where pDst
is pointing at. *pDst is the same as pDst[0]. We increment both pointers by 1 (++pDst
and ++pSrc) in order to prepare processing of the next pixel within the row, which is
another typical example for pointer arithmetic.

As we did not do border handling, that is, we did not process the first and last row,
respectively, the original image values are simply copied there (filterGaussian3x3,
line 51)

memcpy(pFltY , pImg , width) ;
memcpy(pFltY+width ∗(height −1) , pImg+width ∗(height −1) , width) ;

The routine memcpy() used here is quite low-level, but best suited for copying a block
of memory. We simply pass pointers to the starting positions for reading and writing,
respectively, and the number of bytes to be copied. Note that we want to copy unsigned

char values which are single bytes in fact. If one wanted to copy values of type int using
memcpy(), the corresponding number of items had to be multiplied by sizeof(int) to
receive the correct size.

Now the second part of our filter kernel is calculated – taking the intermediate image as
input and the original for writing. Finally, we clean up by unblocking the memory that
has been allocated.

f i l t e rGaus s 3x1 (pImg , pFltY , width , he i gh t) ;
delete pFltY ;

After the function returns to our main() we save the filter response image.

7

writePGM(” ha l f F i l t e r e d .pgm” , pScaledImage , widthScl , h e i gh tSc l) ;

to a file. Figure 2b shows how it should look like.

5. Histograms and image enhancement

For many applications it makes sense to improve the quality of the image before starting
further computations. One common method is to calculate a histogram and modify the
image such that the pixels make use of the full range of gray-values {0 . . . 255}. Depend-
ing on the used method we will receive higher contrast and an appropriate illumination.

(a) (b)

Figure 3: Our image (a) before and (b) after histogram stretching. The left image is the
same as in figure 2b.

Before modifying the image by a histogram stretch, we compute a histogram with the full
resolution of 8 bit. One may declare an array of 256 unsigned int values and initialize
them to 0. The most efficient way of doing this is to use the C-function memset() that
writes a specified byte-value to a memory block, given by the starting position and a
length in bytes. Thus, we insert 256 · 4 bytes of zeros, starting at the position of the
histogram:

unsigned int histogram [2 5 6] ;
memset (histogram , 0 , 256∗ s i zeo f (unsigned int)) ;

The expression sizeof(unsigned int) is used for safety reasons, but will evaluate to 4
in most C/C++implementations.

Computing the actual histogram is as easy as counting all occurring gray-values. We
iterate over all pixels and increment the corresponding histogram item.

for (int i = 0 ; i < widthScl∗ he i gh tSc l ; i++)
++histogram [pScaledImage [i]] ;

For the stretching we need to determine two bounds l and u for the mapping, which
is a simple linear function [l, u] → [0, 255]. We decide to cut off 5% of the lowest and
highest histogram values in order to be robust to noise, so that two additional constants

8

lowerPercentile and upperPercentile are defined. They express how many low and
high pixels are left outside the bounds.

const f loat cutOffPercentage = 0 . 0 5 ;
unsigned char lowerBound , upperBound ;
unsigned int hi stAccu = 0 ;
const unsigned int l owe rP e r cen t i l e = cutOffPercentage ∗ widthScl∗ he i gh tSc l ;
const unsigned int upperPercen t i l e = (1− cutOffPercentage) ∗ widthScl∗ he i gh tS c l ;

Iterating through the histogram, the entries are accumulated in histAccu. As long
as the accumulator is smaller than 5% of the pixels, we store the index as the lower
bound and continue with the next iteration. Reaching the lowerPercentile we keep
on iterating until histAccu exceeds the upperPercentile, so that the upper bound can
be stored before breaking the loop.

for (int h = 0 ; h < 256 ; h++)
{

hi stAccu += histogram [h] ;
i f (h i stAccu <= lowe rP e r cen t i l e)
{

lowerBound = h ;
continue ;

}
i f (h i stAccu >= upperPercen t i l e)
{

upperBound = h ;
break ;

}
}

Knowing the two bounds, the scale factor for the linear mapping can be determined as
histScale. The resulting function is then applied to all image pixels receiving newVal.
To make sure all values lie within [0, 255] we limit them using the template functions
std::min() and std::max(). Note that we perform these computations in integer type
because the unsigned char domain is left in between.

const f loat h i s t S c a l e = 255. / (upperBound − lowerBound) ;
for (int i = 0 ; i < widthScl∗ he i gh tSc l ; i++)
{

const int newVal = h i s t S c a l e ∗ ((int) pScaledImage [i] − lowerBound) ;
pScaledImage [i] = std : : min<int>(255 , std : : max<int>(0 , newVal)) ;

}
writePGM(”histogram .pgm” , pScaledImage , widthScl , h e i gh tSc l) ;

The resulting image is saved to histogram.pgm, see figure 3b.

6. Gradients, energy, and segmentation

A very important feature in images are contours or edges which result form visible object
borders for instance. In order to detect edges, we have to find small image regions where
”something changes”, i.e., brightness in grayscale images. In this section we show how
to compute a measure for edge strength based on simple filter operations (see sec. 4
also).

First, we allocate memory for the energy image and initialize it by setting all pixel values
to 0 (’black’) using memset. See line 147 in our code:

9

unsigned char ∗ energy = new unsigned char [widthScl ∗ he i gh tSc l] ;
memset (energy , 0 , widthScl∗ he i gh tSc l) ;

The energy e of one pixel is calculated as e =
√

dx2 + dy2 where dx and dy are the
strength of the local gradients in horizontal and vertical direction, respectively. We
iterate over the image (ignoring a border of 1 pixel at each side) in a nested loop:

for (int y = 1 ; y < he i gh tSc l −1; ++y)
{

const int rowOffset = y ∗ widthScl ;
for (int x = 1; x < widthScl −1; ++x)
{

const int gradX = pScaledImage [rowOffset+x+1] − pScaledImage [rowOffset+x−1] ;
const int gradY = pScaledImage [rowOffset+x+widthScl]

− pScaledImage [rowOffset+x−widthScl] ;
energy [rowOffset+x] = sq r t ((f l oat) (gradX ∗ gradX + gradY ∗ gradY)) / sqr t (2 . f) ;

}
}

We can calculate the offset rowOffset of the current row in memory relative to pScaledImage
at the beginning to the outer loop. Using this row offset in combination with the inner
loop variable x, it is easy to access the four adjacent pixels that are needed for gradi-
ent computation: To calculate the energy of pixel (x, y), we calculate gradX based on
(x− 1, y) and (x+1, y) and gradY based on (x, y− 1) and (x, y+1). For calculating the
energy, we use float (not double) precision because it is sufficient here. The maximum
possible energy is emax =

√
2 ∗ 2552 =

√
2 · 255, therefore we make use of division by

sqrt(2.f) in order to normalize to unsigned char range.

Finally, we write the resulting energy image to the disk,

writePGM(”energy .pgm” , energy , widthScl , h e i gh tSc l) ;

it should look like the image in figure 4a.

(a) (b)

Figure 4: (a) The energy image and (b) a binary version of it obtained by thresholding.

If one wants to have a segmentation showing whether a pixel belongs to an edge or not,
a binary version of the energy image can be calculated. We did this by thresholding. The
result is the simplest form of a so called edge image. We iterate over the whole image
with a single for loop, reading and writing pixel-wise. The result is set to true (255)
or false (0) here depending on the energy being higher or lower than 30 (hard-coded
here), see line 167–173.

10

for (int i = 0 ; i < widthScl∗ he i gh tSc l ; i++)
{

i f (energy [i] > 30)
energy [i] = 255;

else

energy [i] = 0 ;
}

writePGM(”energyThresh .pgm” , energy , widthScl , h e i gh tSc l) ;

The resulting image is written to energyThresh.pgm. Figure 4b shows this binary edge
image.

Now we are done with all examples concerning grayscale images. Therefore, we should
de-allocate the memory we assigned in our code.

delete energy ;
delete pScaledImage ;
f r e e (pImage) ;

Note that those pointer variables still exist and even point to the earlier locations.
Nevertheless, after the next calls, it is not safe to access this memory. That’s why you
might see code where pointers are set to 0 after memory is released – not a bad idea in
order to allow the detection of the pointer’s state afterwards.

7. Color images

So far, we described the handling of grayscale images. If you want to consider color
images instead, some differences emerge regarding image representation and access. With
color many more image processing operations become possible!

In color images, one pixel cannot be described by a single intensity value. Instead, one
typically uses a 3-tupel to define the color of one point. A very popular color space is
RGB where the color of one pixel is defined by a red, a green and a blue component.
Other color spaces are HSV and YUV, for instance.

From a programming point of view, it is desirable to allocate an even number of bytes
per pixel in order to have efficient memory access on today’s PCs. Therefore, colors
should be represented by 32 bit integers in memory. However, we want to pack three
8-bit color components in such an integer and have easy access. That’s why we define
an appropriate data structure first:

union rtcvRgbaValue
{

int m Val ;
struct

{
unsigned char m b ;
unsigned char m g ;
unsigned char m r ;
unsigned char m a ;

} ;
unsigned char byte [4] ;

. . .
} ;

11

This union data structure allows to define exactly what we wanted to have: a new data
type with size of an integer where we can access the four single bytes comfortably by
name (m r, m g, ...) or index (byte[0], byte[1], ...). Here, we use one byte for red,
green and blue, respectively. The fourth byte is reserved to represent the so called alpha

channel coding the transparency of the pixel. We will not make use of alpha values in
this tutorial.

Figure 5: An illustration of the HSV color space. You could also process this
HSV cone.ppm to see what the following methods are doing in HSV space.

Now that we have a convenient data type, we simply write

rtcvRgbaValue ∗ pRgbImage = 0 ;

in order to declare a pointer pRgbImage that can address a color image in memory. Again
(see sec. 2), a predefined function is called in order to read from a file:

readOk = readPPM(” ey e s c o l o r .ppm” , &pRgbImage , width , he i gh t) ;

Note that PPM is for color images what PGM is for grayscale images – namely a very
simple data format, storing raw (uncompressed) image data with minimum overhead.
We can check if reading the image was successful

i f (! readOk)
{

p r i n t f (”Reading co l o r image f a i l e d !\n”) ;
p r i n t f (”Press any key to ex i t .\n”) ;
getchar () ;
return −1;

}

and, if it was, we can now perform some exemplary operations on our color image (see
fig. 6). Let’s start by compiling some statistics. One could ask what the dominant, i.e.
most frequent, color is. Unfortunately, the RGB color space is not very well suited for
answering questions like this. Therefore, we build a histogram based on hue values, a
component from the HSV color space. First, a histogram with eight bins is created and
initialized (see sec. 5):

unsigned int hueHist [8] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;

12

Figure 6: The image loaded from eyes color.ppm.

We could have used memset() here as well or even a loop. Now we iterate over all pixels
of our image (in a single loop) and collect the statistics:

for (int i = 0 ; i < width∗ he i gh t ; i++)
++hueHist [pRgbImage [i] . getHue () >> 5] ;

This might look difficult – so first things first. getHue() is a function of our RGB

datatype, calculating the hue value from r, g, and b. You might want to have a look
at the implementation of this function in PpmIO.h or on Wikipedia1. The resulting hue

value is shifted 5 bits to the right. This is the same as an integer division by 25 = 32
but might be faster depending on hardware and compiler used. This division is done
in order to calculate the appropriate bin {0, . . . , 7} in which the hue value {0, . . . , 255}
goes into. Finally, the number of pixels in the related bin is increased by one with the
pre-increment operator ++ (post-increment will do as well here).

In the next step (lines 206–215), we search our histogram for the bin maxHue containing
the maximum number of contributing pixels. As each bin represents an interval of hue
values, the index of the best filled bin allows to calculate the dominant color in our
image.

int maxHist = 0 ;
int maxHue = −1;
for (int h = 0 ; h < 8 ; h++)
{

i f (hueHist [h] > maxHist)
{

maxHist = hueHist [h] ;
maxHue = h ;

}
}

In order to see what we found, let’s create an image showing which pixels belong to
the dominant color (see sec. 6). In the lines 220 to 230 we create a new image hueSeg,
iterate over our input image, set the gray-values to 255 (white) if the pixel matches the
description we found, and 0 (black) otherwise.

1http://en.wikipedia.org/wiki/HSL_and_HSV

13

http://en.wikipedia.org/wiki/HSL_and_HSV

unsigned char ∗ hueSeg = new unsigned char [width∗he i gh t] ;
for (int i = 0 ; i < width∗ he i gh t ; i++)
{

const unsigned char hue = pRgbImage [i] . getHue () >> 5 ; // in b i n s
const unsigned char sat = pRgbImage [i] . getSat () ;
const unsigned char val = pRgbImage [i] . getV () ;
i f (hue == maxHue && sat > 100 && val > 100)

hueSeg [i] = 255;
else

hueSeg [i] = 0 ;
}

In addition to the hue-check it is also necessary to exclude pixels that are achromatic by
constraining the saturation and the v value. Try to do the same segmentation without
these constraints and it will give you worse results. The image showing the segmentation
is saved to a file (see fig. 7)

writePGM(”hueSegmentation .pgm” , hueSeg , width , he i gh t) ;

Figure 7: Segmentation of dominant color in our image.

Finally, we have to clean up and end our program. As the memory at hueSeg was
allocated with new and memory at pRgbImage was allocated with malloc(), we have to
use delete and free() respectively.

delete hueSeg ;
f r e e (pRgbImage) ;

p r i n t f (” Fin i shed ! Press any key .\n”) ;
getchar () ;

return 0 ;

We output some messages to the console, wait for the user to confirm, and return 0

which stands for ”Everything went well”.

8. Final remarks

In this part of the tutorial, we showed how to perform basic image processing tasks with
C /C++. In order to teach many different things, we did basically the same in different

14

possible ways (allocating and accessing memory, for instance). This is not good practice
for all day programming – there, you should be as consistent as possible.

The examples introduces in this first part can all be realized in plain C (with minimal
adaptions). The second part is considering more advanced programming techniques.

15

9. Example program code

1 #include ”PgmIO. h”
2 #include ”PpmIO. h”
3
4 stat i c void f i l t e rGaus s 3x1 (unsigned char ∗ pImgDst , const unsigned char ∗ pImgSrc ,
5 const int width , const int he i gh t)
6 {
7 for (int y = 0 ; y < he i gh t ; ++y)
8 {
9 unsigned char ∗ pDst = pImgDst + y ∗ width + 1;

10 const unsigned char ∗ pSrc = pImgSrc + y ∗ width ;
11
12 for (int x = 1; x < width −1; ++x)
13 {
14 const unsigned int sum = (int) pSrc [0] + 2∗(int) pSrc [1] + (int) pSrc [2] ;
15 ∗pDst = sum / 4 ;
16 ++pDst ;
17 ++pSrc ;
18 }
19 }
20 } ;
21
22 stat i c void f i l t e rGaus s 1x3 (unsigned char ∗ pImgDst , const unsigned char ∗ pImgSrc ,
23 const int width , const int he i gh t)
24 {
25 for (int y = 1 ; y < height −1; ++y)
26 {
27 unsigned char ∗ pDst = pImgDst + y ∗ width ;
28 const unsigned char ∗ pSrc = pImgSrc + y ∗ width ;
29
30 for (int x = 0; x < width ; ++x)
31 {
32 const unsigned int sum = (int) pSrc[−width] + 2∗(int) pSrc [0] + (int) pSrc [width] ;
33 ∗pDst = sum / 4 ;
34 ++pDst ;
35 ++pSrc ;
36 }
37 }
38 } ;
39
40 // //
41 // F i l t e r image w i t h 3 x3 Gaussian k e r n e l (s ep ar a t e d in 3 x1 and 1x3)
42 // //
43 stat i c void f i l t e rGaus s i an3x3 (unsigned char ∗ pImg , const int width , const int he i gh t)
44 {
45 unsigned char ∗ pFltY = new unsigned char [width ∗ he i gh t] ;
46
47 f i l t e rGaus s 1x3 (pFltY , pImg , width , he i gh t) ;
48
49 // copy border
50 memcpy(pFltY , pImg , width) ;
51 memcpy(pFltY+width ∗(height −1) , pImg+width ∗(height −1) , width) ;
52
53 f i l t e rGaus s 3x1 (pImg , pFltY , width , he i gh t) ;
54
55 delete pFltY ;
56 } ;
57
58
59 int main (int argc , char∗ argv [])
60 {
61 // //
62 // Read gray−va l u e image
63 // //
64 unsigned char ∗ pImage = 0 ;
65 int width , he i gh t ;
66
67 bool readOk = readPGM(” eyes dark .pgm” , &pImage , width , he i gh t) ;
68
69 i f (! readOk)
70 {
71 p r i n t f (”Reading image f a i l e d !\n”) ;
72 p r i n t f (”Press any key to ex i t .\n”) ;
73 getchar () ;
74 return −1;
75 }
76
77 // //
78 // Sc a l e image by 1/2
79 // //
80 const int widthScl = width / 2 ;
81 const int he igh tSc l = he i gh t / 2 ;

16

82
83 unsigned char ∗ pScaledImage = new unsigned char [widthScl ∗ he igh tSc l] ;
84
85 for (int y = 0 ; y < he i gh tSc l ; y++)
86 {
87 for (int x = 0; x < widthScl ; x++)
88 {
89 pScaledImage [x + y∗widthScl] = pImage [2∗x + 2∗y∗width] ;
90 }
91 }
92
93 writePGM(” ha l f . pgm” , pScaledImage , widthScl , h e i gh tSc l) ;
94
95 // //
96 // F i l t e r image w i t h 3x3 Gaussian k e r n e l
97 // //
98 f i l t e rGaus s i a n3x3 (pScaledImage , widthScl , h e i gh tSc l) ;
99

100 writePGM(” ha l f F i l t e r e d .pgm” , pScaledImage , widthScl , h e i gh tSc l) ;
101
102 // //
103 // Compute h i s t o g ram / cu t upper and lower 5% o f gray−v a l u e s
104 // //
105 unsigned int histogram [2 5 6] ;
106 memset (histogram , 0 , 256∗ s i zeo f (unsigned int)) ;
107
108 // c a l c u l a t e h i s t o g ram
109 for (int i = 0 ; i < widthScl∗ he i gh tSc l ; i++)
110 ++histogram [pScaledImage [i]] ;
111
112 // determine lower and upper bound f o r h i s t o g ram s t r e t c h
113 const f loat cutOffPercentage = 0 . 0 5 ;
114 unsigned char lowerBound , upperBound ;
115 unsigned int hi stAccu = 0 ;
116 const unsigned int l owe rP e r cen t i l e = cutOffPercentage ∗ widthScl∗ he i gh tSc l ;
117 const unsigned int upperPercen t i l e = (1− cutOffPercentage) ∗ widthScl∗ he i gh tS c l ;
118
119 for (int h = 0 ; h < 256 ; h++)
120 {
121 hi stAccu += histogram [h] ;
122 i f (h i stAccu <= lowe rP e r cen t i l e)
123 {
124 lowerBound = h ;
125 continue ;
126 }
127 i f (h i stAccu >= upperPercen t i l e)
128 {
129 upperBound = h ;
130 break ;
131 }
132 }
133
134 // a s s i g n new gray−v a l u e s from l i n e a r mapping between lower and upper bound
135 const f loat h i s t S c a l e = 255. / (upperBound − lowerBound) ;
136 for (int i = 0 ; i < widthScl∗ he i gh tSc l ; i++)
137 {
138 const int newVal = h i s t S c a l e ∗ ((int) pScaledImage [i] − lowerBound) ;
139 pScaledImage [i] = std : : min<int>(255 , std : : max<int>(0 , newVal)) ;
140 }
141
142 writePGM(”histogram .pgm” , pScaledImage , widthScl , h e i gh tSc l) ;
143
144 // //
145 // Compute image energy from g r a d i e n t s
146 // //
147 unsigned char ∗ energy = new unsigned char [widthScl ∗ he i gh tSc l] ;
148 memset (energy , 0 , widthScl∗ he i gh tSc l) ;
149
150 for (int y = 1 ; y < he i gh tSc l −1; ++y)
151 {
152 const int rowOffset = y ∗ widthScl ;
153 for (int x = 1; x < widthScl −1; ++x)
154 {
155 const int gradX = pScaledImage [rowOffset+x+1] − pScaledImage [rowOffset+x−1] ;
156 const int gradY = pScaledImage [rowOffset+x+widthScl]
157 − pScaledImage [rowOffset+x−widthScl] ;
158 energy [rowOffset+x] = sq r t ((f l oat) (gradX ∗ gradX + gradY ∗ gradY)) / sqr t (2 . f) ;
159 }
160 }
161
162 writePGM(”energy .pgm” , energy , widthScl , h e i gh tSc l) ;
163
164 // //
165 // Segment h i gh energy area s by Thre sho ld ing

17

166 // //
167 for (int i = 0 ; i < widthScl∗ he i gh tSc l ; i++)
168 {
169 i f (energy [i] > 30)
170 energy [i] = 255;
171 else

172 energy [i] = 0 ;
173 }
174 writePGM(”energyThresh .pgm” , energy , widthScl , h e i gh tSc l) ;
175
176 delete energy ;
177 delete pScaledImage ;
178 f r e e (pImage) ;
179
180
181 // //
182 // Read c o l o r (RGB) image
183 // //
184 rtcvRgbaValue ∗ pRgbImage = 0 ;
185 readOk = readPPM(” ey e s c o l o r .ppm” , &pRgbImage , width , he i gh t) ;
186 // readOk = readPPM(”HSV cone . ppm” , &pRgbImage , width , h e i g h t) ; // proo f o f concep t ;)
187
188 i f (! readOk)
189 {
190 p r i n t f (”Reading co l o r image f a i l e d !\n”) ;
191 p r i n t f (”Press any key to ex i t .\n”) ;
192 getchar () ;
193 return −1;
194 }
195
196 // //
197 // Determine t he dominant c o l o r from a Hue−h i s t og ram
198 // //
199
200 // Compute hue−h i s t og ram wi t h 8 b i n s
201 unsigned int hueHist [8] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
202 for (int i = 0 ; i < width∗ he i gh t ; i++)
203 ++hueHist [pRgbImage [i] . getHue () >> 5] ;
204
205 // Find maximum in h i s t og ram
206 int maxHist = 0 ;
207 int maxHue = −1;
208 for (int h = 0 ; h < 8 ; h++)
209 {
210 i f (hueHist [h] > maxHist)
211 {
212 maxHist = hueHist [h] ;
213 maxHue = h ;
214 }
215 }
216
217 // //
218 // Segment dominant c o l o r (and n e i g hb o r s) in HSV c o l o r space
219 // //
220 unsigned char ∗ hueSeg = new unsigned char [width∗he i gh t] ;
221 for (int i = 0 ; i < width∗ he i gh t ; i++)
222 {
223 const unsigned char hue = pRgbImage [i] . getHue () >> 5 ; // in b i n s
224 const unsigned char sat = pRgbImage [i] . getSat () ;
225 const unsigned char val = pRgbImage [i] . getV () ;
226 i f (hue == maxHue && sat > 100 && val > 100)
227 hueSeg [i] = 255;
228 else

229 hueSeg [i] = 0 ;
230 }
231
232 writePGM(”hueSegmentation .pgm” , hueSeg , width , he i gh t) ;
233
234 delete hueSeg ;
235 f r e e (pRgbImage) ;
236
237 p r i n t f (” Fin i shed ! Press any key .\n”) ;
238 getchar () ;
239
240 return 0 ;
241 }

18

10. Exercises

Here are some more examples to show what we can do with images. You may want to
try some of these exercises in order to visualise what you learned from the tutorial.

The exact signature of the functions is not defined in most exercises here. Often, you
may either pass one pointer and manipulate the image directly or pass a const pointer
and a second one for the result image. You could even use pointer to pointers or make
use of the image class from the second part of the tutorial.

1. Write a function convertToGrayscale(. . .) that converts a color image (const
rtcvRgbaValue *) to grayscale (unsigned char *). The intensity i of a pixel
with color values (r, g, b) can be calculated as i = 0.3 · r + 0.6 · g + 0.1 · b.

2. Write a function resize 2(. . .) that creates an image scaled by a factor of 2. Make
use of adequate filtering in order to enhance the appearance.

3. Write a function saveRoi(. . .) accepting an image and a rectangular region of
interest (ROI). The function should make use of writePGM in order to save only
the selected region of the image to a file.

4. Write a function filterMean(. . ., const int sxFilter, const int syFilter)

[filterMedian] that performs filtering of an image with a mean [median] filter of
arbitrary size sxFilter × syF ilter.

5. Write a function mirrorImageHorizontally(. . .) [mirrorImageVertically] that
creates a mirrored version of a grayscale [color] image.

6. Write a function rotateImage 45(. . .) that rotates a grayscale images by 45◦.
Note that the rotated image has a larger size and therefore you have to re-allocate
the memory (backup the original image first!) or create a new image.

7. Write a function rotateImage(. . ., double angle) that rotates a grayscale im-
ages by angle degrees. Read up on bilinear interpolation – you can need it.

8. Extract from a color image three grayscale images, each storing one color chan-
nel separately (e.g., R, G, and B). Perform some operations (filtering, histogram
stretching, ...) on the channels independently and then assemble the three parts
to a single color image again.

19

Part II.
Advanced programming techniques

11. Introduction

The second part of our tutorial will follow the example code in section 14. We introduce
a simple C++ template class in order to handle images. The focus of this section lies
on some advanced programming techniques, so there are no further image processing
examples.

12. A new template class

In this section, we show how a new class is declared and implemented. We develop the
class rtcvImage that can be used to handle images of arbitrary pixel type and size.
Therefore, we need to build a template class.

First, we include some stuff that is needed here.
#include <s t r i n g . h>
#include ” a s s e r t . h”

Then we start the declaration of our class using the template parameter T representing
the type of data that the class actually handles. This will be resolved at compile-
time: If someone writes code declaring rtcvImage<unsigned char> imgGrayScale and
rtcvImage<rtcvRgbaValue> imgRgb, two different specialized implementations of our
class will be created. The declaration starts in line 9.
template <typename T>
class rtcvImage
{
public :

rtcvImage<T>(const int sx = 0 , const int sy = 0 , const T ∗ pImg = 0) ;
rtcvImage<T>(const rtcvImage<T> & img) ;
˜ rtcvImage<T>() ;

rtcvImage<T> & operator=(const rtcvImage<T> & img) ;

We have two different constructors here. As the first one has default values for all param-
eters, it serves as default constructor. The second one is the so called copy constructor

used to create a new object as a copy of a another object that already exists. We have

to implement the copy constructor here because one of our members is a pointer and
this would cause unwanted effects here. Note that the compiler automatically creates a
copy constructor which is fine for many other cases.

The destructor rtcvImage is called when the object of our class is destroyed. We imple-
ment this as we have to release memory that has been allocated. If we don’t, memory

leaks will be caused. The assignment operator operator= has to be implemented here
for the same reason as the copy constructor.

20

Note that up to now, the functions only were declared and not yet implemented.

Our class has three members storing the image data and the current size of the image (see
line 59 in the source code). All three members are declared to be private, therefore they
cannot be accessed from outside our class directly. We will provide member functions for
access in order to ensures that we have full control, e.g. concerning memory allocation.

private :
T ∗ pData ;

int sx ;
int sy ;

So let’s continue with some functions allowing to use our new image class, see line 21–
41.

void changeS ize (const int sx , const int sy) ;
void f i l l (const T & val) ;
void setData (const T ∗ pDatNew) ;

inl ine T ∗ getDataPointer () const { return pData ; }
inl ine const T ∗ getDataPointerConst () const { return pData ; }
inl ine int getSx () const { return sx ; }
inl ine int getSy () const { return sy ; }
inl ine int getSz () const { return sx∗sy ; }

inl ine T getValue (const int idx) const

{
a s s e r t ((idx >= 0) && (idx < sx∗ sy)) ;
return (pData [idx]) ;

}

inl ine T getValue (const int x , const int y) const

{
a s s e r t ((x >= 0) && (x < sx) && (y >= 0) && (y < sy)) ;
return (pData [y ∗ sx + x]) ;

}

The first three functions are declared and will be implemented later like all others before.
The following seven functions are typical get-functions (”getters”) allowing others to
read values of our private members. They are declared to be inline and const and are
implemented directly. The inline keyword is a hint for the compiler not to perform a
function call here but to execute the code directly. The declaration of a function (not
a variable!) as const means that calling such a function cannot (must not) change the
object (i.e. its members) the function belongs to.

We provide two different functions to access our pointer pData itself, one returning a
const pointer (”read-only access”). Note that making the data pointer accessible outside
the class involves some risk – somebody could deallocate our memory, for instance. So
these functions contradict the idea of the private/getter/setter concept in some way.
Nevertheless, we accept this in order to allow any processing of the image data outside
the class efficiently.

We provide two different getValue functions allowing to access single pixel values by
coordinates or index respectively. Note that we make use of assert statements here in
order to make sure that only memory that has been allocated by us is accessed. These
checks are only performed when the code is compiled in debug mode. Therefore, in
release mode, we do not waste runtime on the one hand but have to rely on correct
usage on the other hand.

21

The counterpart of get-functions are, of course, set-functions (”setters”). We imple-
ment such functions in line 43–55 for manipulation of single pixel values. Again, assert
statements support debugging.

inl ine void setValue (const int idx , const T & val) const

{
a s s e r t ((idx >= 0) && (idx < sx∗ sy)) ;
pData [idx] = val ;
return ;

}

inl ine void setValue (const int x , const int y , const T & val) const

{
a s s e r t ((x >= 0) && (x < sx)&& (y >= 0) && (y < sy)) ;
pData [y ∗ sx + x] = val ;
return ;

}

The declaration of our new image class is complete but we still have to implement some
functions. The constructors are implemented as follows (line 67–82).

template<typename T> rtcvImage<T> : : rtcvImage (const int sx , const int sy , const T ∗ pImg)
{

this−>pData = 0 ;
this−>sx = 0 ;
this−>sy = 0 ;

this−>changeS ize (sx , sy) ;

i f (pImg)
setData (pImg) ;

}

template<typename T> rtcvImage<T> : : rtcvImage (const rtcvImage<T> & img) : pData (0) , sx (0) , sy (0)
{

this−>changeS ize (img . sx , img . sy) ;
this−>setData (img . getDataPointer ()) ;

}

We have to initialize our members which is done in form of a initializer list in the second
case. Have a look at the first constructor: if a concrete size of our image is given, we make
use of our own function setData handling that. If furthermore image data is provided,
setData will copy that to our own memory buffer. The second (copy) constructor works
in a very similar way. However, here we get another image and have to assure becoming
a copy of that.

The destructor releases memory that was allocated by any class member function. Note
that calling delete pData is no problem even if the pointer is 0. That is why all pointers
are initialized to 0.
template<typename T> rtcvImage<T> : : ˜ rtcvImage ()
{

delete pData ;
}

The next function to be implemented is the assignment operator. It is necessary to
perform the check if the left hand and right hand side are different: this != &img.
This is a typical issue when implementing operators like this: As the first operation in
changeSize (see below) is to deallocate our memory, self-assignment would destroy our
own data.
template<typename T> rtcvImage<T> & rtcvImage<T> : :operator=(const rtcvImage<T> & img)
{

i f (this != &img)
{

22

this−>changeS ize (img . sx , img . sy) ;
this−>setData (img . getDataPointer ()) ;

}

return ∗ this ;
}

The function changeSize manages the size of our image and therefore the amount of
memory allocated. It does not scale the image content – previous image data is thrown
away when calling changeSize.

template<typename T> void rtcvImage<T> : : changeS ize (const int sx , const int sy)
{

a s s e r t ((sx >= 0) && (sy >= 0)) ;

i f ((sx != this−>sx) | | (sy != this−>sy))
{

delete pData ;
pData = 0 ;

i f ((sx > 0) && (sy > 0))
{

pData = new T[sx∗ sy] ;
this−>sx = sx ;
this−>sy = sy ;

}
else

{
this−>sx = 0;
this−>sy = 0;

}
}

return ;
}

Our next small function fill uses the very fast memset function to set all pixels’ values
to val. Therefore it can be used for initialization of images, for instance. Unfortunately,
memset only works byte-wise so that we can only use this implementation for unsigned
char or char images. For all other cases we provide a default implementation using
setValue.
void rtcvImage<unsigned char > : : f i l l (const unsigned char & val)
{

memset (getDataPointer () , val , sx∗ sy) ;

return ;
}

void rtcvImage<char > : : f i l l (const char & val)
{

memset (getDataPointer () , val , sx∗ sy) ;

return ;
}

template<typename T> void rtcvImage<T> : : f i l l (const T & val)
{

const int s i z e = sx∗sy ;
for (int i =0; i<s i z e ; i++)

setValue (i , val) ;

return ;
}

Finally, the function setData allows to store image data (that has been created some-
where else, e.g., read from a file) in an object of rtcvImage. The data is simply copied
to our own memory. We assume that we are allowed to read sx× sy values there. We
can make use of the very fast function memcpy here.

23

template<typename T> void rtcvImage<T> : : setData (const T ∗ pDatNew)
{

a s s e r t (((sx == 0) && (sy == 0)) | | (pDatNew != 0)) ;

memcpy(pData , pDatNew , sx∗ sy∗ s i zeo f (T)) ;

return ;
}

13. Using our new class

Now that we have completed rtcvImage, we can create image objects like

rtcvImage<unsigned char> img ;
rtcvImage<unsigned char> imgGray ;
rtcvImage<int> imgInt (1 , 1) ;
rtcvImage<double> imgDouble (100 , 100) ;
rtcvImage<rtcvRgbaValue> imgCol (640 , 480) ;

The size of the images can be changed later.

imgGray . changeS ize (320 , 240) ;
imgCol . changeS ize (320 , 240) ;

Let’s perform some initializations.

imgGray . f i l l (0) ;
imgDouble . f i l l (0 .) ;
imgCol . f i l l (rtcvRgbaValue (255 , 0 , 0)) ;

The next short line of code will cause two things: the memory allocated by the object
img is resized (320 × 240 elements) and the data from imgGray is copied.

img = imgGray ;

The following does not work because the images are of different types. Nevertheless,
one could write some conversion routines that handle the different cases (see exercises
in sec. 15).

imgGray = imgCol ;

Finally, let’s read and write some pixel values.

imgDouble . setValue (50 , 50 , 5 .) ; // ac ce s s by c o o r d i na t e s
imgDouble . setValue (1000 , −0.5) ; // ac ce s s by index

const int sy = imgDouble . getSy () ;
double ∗ pData = imgDouble . getDataPointer () ;
pData [10 ∗ sy + 5] = 7 . 5 ; // index−based ac c e s s a t c o o rd i n a t e s (x , y) = (5 , 10)
pData [5 ∗ sy + 10] = 1 0 . ; // index−based ac c e s s a t c o o rd i n a t e s (x , y) = (10 , 5)

24

14. Example program code

1 #ifndef RTCV IMAGE H
2 #define RTCV IMAGE H
3
4
5 #include <s t r i n g . h>
6 #include ” a s s e r t . h”
7
8
9 template <typename T>

10 class rtcvImage
11 {
12
13 public :
14
15 rtcvImage<T>(const int sx = 0 , const int sy = 0 , const T ∗ pImg = 0) ;
16 rtcvImage<T>(const rtcvImage<T> & img) ;
17 ˜ rtcvImage<T>() ;
18
19 rtcvImage<T> & operator=(const rtcvImage<T> & img) ;
20
21 void changeS ize (const int sx , const int sy) ;
22 void f i l l (const T & val) ;
23 void setData (const T ∗ pDatNew) ;
24
25 inl ine T ∗ getDataPointer () const { return pData ; }
26 inl ine const T ∗ getDataPointerConst () const { return pData ; }
27 inl ine int getSx () const { return sx ; }
28 inl ine int getSy () const { return sy ; }
29 inl ine int getSz () const { return sx∗sy ; }
30
31 inl ine T getValue (const int idx) const

32 {
33 a s s e r t ((idx >= 0) && (idx < sx∗ sy)) ;
34 return (pData [idx]) ;
35 }
36
37 inl ine T getValue (const int x , const int y) const

38 {
39 a s s e r t ((x >= 0) && (x < sx)&& (y >= 0) && (y < sy)) ;
40 return (pData [y ∗ sx + x]) ;
41 }
42
43 inl ine void setValue (const int idx , const T & val) const

44 {
45 a s s e r t ((idx >= 0) && (idx < sx∗ sy)) ;
46 pData [idx] = val ;
47 return ;
48 }
49
50 inl ine void setValue (const int x , const int y , const T & val) const

51 {
52 a s s e r t ((x >= 0) && (x < sx)&& (y >= 0) && (y < sy)) ;
53 pData [y ∗ sx + x] = val ;
54 return ;
55 }
56
57
58 private :
59 T ∗ pData ;
60
61 int sx ;
62 int sy ;
63 } ;
64
65 //===
66
67 template<typename T> rtcvImage<T> : : rtcvImage (const int sx , const int sy , const T ∗ pImg)
68 {
69 this−>pData = 0 ;
70 this−>sx = 0 ;
71 this−>sy = 0 ;
72
73 this−>changeS ize (sx , sy) ;
74
75 i f (pImg) setData (pImg) ;
76 }
77
78 template<typename T> rtcvImage<T> : : rtcvImage (const rtcvImage<T> & img) : pData (0) , sx (0) , sy (0)
79 {
80 this−>changeS ize (img . sx , img . sy) ;
81 this−>setData (img . getDataPointer ()) ;

25

82 }
83
84 template<typename T> rtcvImage<T> : : ˜ rtcvImage ()
85 {
86 delete pData ;
87 }
88
89 template<typename T> rtcvImage<T> & rtcvImage<T> : :operator=(const rtcvImage<T> & img)
90 {
91 i f (this != &img)
92 {
93 this−>changeS ize (img . sx , img . sy) ;
94 this−>setData (img . getDataPointer ()) ;
95 }
96
97 return ∗ this ;
98 }
99

100 template<typename T> void rtcvImage<T> : : changeS ize (const int sx , const int sy)
101 {
102 a s s e r t ((sx >= 0) && (sy >= 0)) ;
103
104 i f ((sx != this−>sx) | | (sy != this−>sy))
105 {
106 delete [] pData ;
107 pData = 0 ;
108
109 i f ((sx > 0) && (sy > 0))
110 {
111 pData = new T[sx∗ sy] ;
112 this−>sx = sx ;
113 this−>sy = sy ;
114 }
115 else

116 {
117 this−>sx = 0;
118 this−>sy = 0;
119 }
120 }
121
122 return ;
123 }
124
125 template<typename T> void rtcvImage<T> : : f i l l (const T & val)
126 {
127 const int s i z e = sx∗sy ;
128 for (int i =0; i<s i z e ; i++)
129 setValue (i , val) ;
130
131 return ;
132 }
133
134 void rtcvImage<unsigned char > : : f i l l (const unsigned char & val)
135 {
136 memset (getDataPointer () , val , sx∗ sy) ;
137
138 return ;
139 }
140
141 template<typename T> void rtcvImage<T> : : setData (const T ∗ pDatNew)
142 {
143 a s s e r t (((sx == 0) && (sy == 0)) | | (pDatNew != 0)) ;
144
145 memcpy(pData , pDatNew , sx∗ sy∗ s i zeo f (T)) ;
146
147 return ;
148 }
149
150
151 #endif // #i f n d e f RTCV IMAGE H

26

15. Exercises

1. Write a function like convertRtcvImage(const rtcvImage<int> & imgInt,

rtcvImage<unsigned char> & img) that accepts an integer image, scales its
values to unsigned char range, and writes the results to the a new image img.
This function could be used in order to visualize gradient images, for instance.

2. Write a new template class rtcvVolume that represents 3-dimensional images.

3. Choose some of the functions from part I and integrate them into rtcvImage as
member functions.

4. Read about the C++ keyword friend. Write a new class rtcvGrayScaleImage

that inherits from rtcvImage<unsigned char>. So the new class is specialized
just for the one datatype. One could implement a writePgm function there which
only makes sense for grayscale images.

5. Write a new class rtcvColorImage that inherits from rtcvImage<rtcvRgbaValue>.
You could implement writePpm here (the PPM is for color images what PGM is
for grayscale images – look it up).

27

References

[BBRS] Peter Becker, Andreas Bruchmann, Dirk F. Raetzel, and Manfred Sommer.
C++ – Eine Einführung. http://www.mathematik.uni-marburg.de/~cpp.

[Cli] Marshall Cline. C++ faq lite. http://www.parashift.com/c++-faq-lite.

[Win09] Susanne Winter. Digitale Bildverarbeitung – Skript zur Vorlesung.
http://www.neuroinformatik.ruhr-uni-bochum.de/thbio/group/medical/lecture,
2009.

28

http://www.mathematik.uni-marburg.de/~cpp
http://www.parashift.com/c++-faq-lite
http://www.neuroinformatik.ruhr-uni-bochum.de/thbio/group/medical/lecture

	Basic techniques
	Introduction
	Image representation in memory and function calls
	Accessing an image
	Filtering
	Histograms and image enhancement
	Gradients, energy, and segmentation
	Color images
	Final remarks
	Example program code
	Exercises

	Advanced programming techniques
	Introduction
	A new template class
	Using our new class
	Example program code
	Exercises

