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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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Differential inverse kinematics

which joint velocities to 
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.

x = f(θ)

θ = f−1(x)

kinematic model

inverse kinematic model

·x = J(θ) ·θ
·θ = J−1(θ) ·x
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Fig. 1. The anthropomorphic robotic assistant CORA.

kinematic attractor dynamics approach, which we generalize
to include dynamic collision-avoidance of the arm itself and
the consideration of joint limits. The approach is heuristic and
makes use of a number of simplifying assumptions, but is
considerably simpler than more general methods (e.g., [17])
and maintains the human-like movement trajectories.

One simplification arises from the scenario we are address-
ing: The human user and the robot arm reach for objects on a
table surface (Fig. 1). The robot arm avoids all obstacles, be
they objects positioned on the table or body parts of the human
operator by moving above the occupied regions in space, never
by moving below the the occupied space (e.g., never in the
space between the table and the human operator).

The idea then is to backtrack the movement plan from
the distal to the proximal segments: The tool-point trajectory
is generated through two heading-directions. We control the
arm such that the wrist and forearm follow the collision-free
path in space on which the end-effector has moved. We then
exploit the redundancy of the arm in order to control the
spatial position of the elbow both to clear obstacles with the
upper arm and to satisfy joint-limit constraints at the wrist.
All constraints are integrated by adding forces to attractor
dynamics equations for the hand orientation in space and for
the redundancy angle, which controls elbow elevation.

We first briefly review the kinematics of the redundant,
anthropomorphic arm, defining the redundancy angle and
linking it to the two constraints of obstacle avoidance and joint
limits. Then we describe the total of five dynamical systems
equations from which the arm trajectory is obtained as an
attractor solution, the system sitting at all times in the attractor.
Finally, we describe the implementation of this approach on
the robotic assistant CORA and illustrate its performance.

II. KINEMATICS

A. Inverse kinematics
The reference arm configuration is show in Figure 2. The

arm is composed of a series of roll and pitch joints. The
combination of a roll-pitch-roll-joint is functionally equivalent
to a spherical three DoF joint like the human shoulder or wrist.

The trunk of the robot is controlled separately by gener-
ating a constant joint velocity that brings the shoulder girdle
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Fig. 2. Initial Arm Configuration and coordinate systems:

from its initial position to an orientation perpendicular to the
direction from the base of the torso to the target position. This
orientation of the shoulder has been found to be best suited
for grasping (not unlike the position spontaneously adopted by
humans when they make manipulation movements).

The inverse kinematics problem for the remaining seven
degrees of freedom is solved in closed form [18][19]. Given
the hand orientation θEEF (elevation) and φEEF (azimuth)
and the hand reference point, the vector r⃗h from the wrist to
the hand reference tool-point (Fig. 3) is determined as

r⃗h = RφEEF

z · RθEEF

y · êx · lh (1)

where Rx, Rz denote rotation matrices around the z- and y-
axes, êx the unit vector in the x-direction and lh denotes the
seqment length.
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The redundant degree of freedom is defined by the redun-
dancy circle, the center r⃗m

r⃗m =
|r⃗u|2 − |r⃗f |2 + |r⃗WST |2

2 · |r⃗WST |2
r⃗WST (2)

of which lies on a ray pointing from the shoulder to the wrist
joint. The spatial position of the elbow lies on this circle of
radius R:

R =

√

√

√

√|r⃗u|2 −

(

|r⃗u|2 − |r⃗f |2 + |r⃗WST |2

2 · |r⃗WST |

)2

(3)

Expressing the wrist vector, r⃗WST , through two angles, φWST

and θWST , the elbow position can be written as

r⃗u =
(

RφWST

x RθWST

z Rα
x · ê

)

· R + r⃗m (4)

where Rx and Rz are rotation matrices around the x- and
the z-axis and the redundancy angle, α, characterizes the
position of the elbow on the redundancy circle (Fig. 3). If
the redundancy angle, α, is specified, all limb vectors are
known. A straightforward solution of the inverse kinematics
determines the joint angles θ1, θ2, θ3θ4, θ5, θ6, θ7.

[Iossifidis, Schöner, ICRA 2004]
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for most tasks, there are many more 
degrees of freedom than task 
constraints… 

e.g., 10 joints in the upper arm including scapular 
joints to control hand position and orientation 
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highly skilled workers wielding a hammer to hit a 
nail… => hammer trajectory in space less variable 
than body configuration

as detected in superposing spatial trajectories of lights on hammer vs. 
on body.. 

but: camera frame anchored to nail/space, while initial body 
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Bernstein’s workers
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Classical synergy research strategy
identify distinct synergies with the hope of 
finding a limited set => “the” synergies that 
explain multi-degree of freedom movement 

combine the time series of muscles/DoF under 
different conditions (sometimes including 
repetitions of movements) into one big data set 
and look for structure (e.g. principal 
components)

if a small number of PC’s is sufficient to account 
for most of the variance, conclude that few 
synergies at at work



Synergy: experimental use

E.g, Safavynia, Ting, 2012:

In locomotion, a few temporal patterns can be recruited across
step cycles to reproduce electromyographic (EMG) patterns
across different walking speeds (Ivanenko et al. 2004) and
when walking is combined with other voluntary tasks
(Ivanenko et al. 2005). However, it may not be possible to
dissociate spatial from temporal organization during cyclical
locomotor tasks where temporal and spatial features of muscle
activity tend to be correlated.

Recent evidence suggests that low-dimensional temporal
patterns may be used to recruit SF muscle synergies. For
example, fixed-duration temporal pulses are sufficient to ex-
plain muscle activation patterns described by SF muscle syn-
ergies in frog preparations (Hart and Giszter 2004). Similarly,
temporal patterns of muscle activity in postural perturbations
during balance are defined by a low-dimensional sensorimotor
transformation based on feedback control of center of mass
(CoM) motion (Lockhart and Ting 2007; Welch and Ting
2008, 2009). CoM kinematics are task-level variables that must

be estimated from multisensory integration (Peterka 2002) and
encapsulate the net motion of the body. By assigning unique
feedback gains to CoM displacement, velocity, and accelera-
tion for each muscle at a common delay, the model can
reconstruct the entire time course of muscle activity in multiple
muscles throughout the leg and trunk (Lockhart and Ting 2007;
Welch and Ting 2008, 2009). Moreover, the model can explain
temporal patterns of muscle activity that vary with perturbation
characteristics. While it is unknown whether this model can be
used to describe the recruitment of SF muscle synergies, CoM
feedback likely recruits SF muscle synergies because SF mus-
cle synergies produce forces necessary for CoM control across
a range of postural configurations (Chvatal et al. 2011; McKay
and Ting 2008; Ting and Macpherson 2005; Torres-Oviedo et
al. 2006). A hierarchical structure in which low-dimensional
temporal patterns recruit spatial structures defining muscle
activation patterns is also consistent with current theories about
locomotor pattern generation (Hart and Giszter 2004; McCrea
and Rybak 2008) and trajectory formation (Berniker et al.
2009; Kargo et al. 2010).

Here we hypothesized that during human balance control,
low-dimensional temporal feedback mechanisms recruit SF
muscle synergies. Specifically, we predicted that SF muscle
synergies are modulated by delayed feedback of CoM through-
out perturbation responses. To test this hypothesis, we exam-
ined muscle synergy structure and recruitment in 10-ms bins
throughout postural responses to support-surface translations
including later, previously unexplored epochs that extend be-
yond perturbation deceleration and feature very different com-
binations of muscle activity and CoM kinematics compared
with the initial postural response. We explicitly compared SF
versus TF muscle synergies on their ability to reconstruct EMG
activity in reactive postural responses. We then analyzed the
structure and recruitment of SF muscle synergies extracted
from epochs throughout postural responses to perturbations.
We predicted that SF muscle synergies would have consistent
structure regardless of the extraction epoch. Furthermore, we
predicted that a feedback model based on CoM kinematics
would be able to reproduce SF muscle synergy recruitment
patterns and reliably reconstruct SF muscle synergy activity
throughout postural responses to perturbations.

METHODS

Summary

To determine the organization and control of muscle synergies
throughout a postural task, we recorded human postural responses to
multidirectional ramp-and-hold translations of the support surface.
We investigated different hypotheses on muscle synergy organization
by extracting both SF and TF muscle synergies from the entire
postural response. We compared SF versus TF muscle synergy struc-
ture and EMG reconstructions. We then compared SF muscle synergy
structures across epochs to determine their degree of consistency
across the time course of postural responses. We investigated task-
level control of SF muscle synergies by applying a delayed feedback
model based on CoM kinematics to reconstruct muscle synergy
recruitment throughout anterior-posterior (A-P) perturbations. We
compared observed and reconstructed SF muscle synergy recruitment
patterns and examined the ability of the feedback model to reconstruct
trial-by-trial variability in SF muscle synergy recruitment. To ensure
that our models of SF muscle synergy recruitment were adequate to

Fig. 1. Hypotheses and concepts explored in the present study. A: muscle
synergies with fixed spatial weightings [spatially fixed (SF) muscle synergies].
Here the nervous system organizes muscle activity spatially. The nervous
system can variably recruit SF muscle synergies when a specific muscle
combination is desired throughout a task in a feedback or feedforward manner.
B: muscle synergies with fixed temporal recruitment [temporally fixed (TF)
muscle synergies]. In this hypothesis, the nervous system uses fixed temporal
sequences to recruit muscles during a task, consistent with feedforward
control. When a specific temporal sequence is executed, a set of muscles that
can vary across directions and trials is chosen to reproduce EMG activity
necessary to achieve the task.
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Fig. 5. Comparison of SF vs. TF muscle synergy structure and muscle reconstructions. A: muscle synergy structure. SF muscle synergies organize muscle activity
into groups of muscles that have common spatial activation patterns (left). TF muscle synergies organize muscle activity into consistent temporal patterns (right).
As the number of TF muscle synergies increases, temporal patterns of activation become more localized in time. Data are shown for subject 1. B: muscle
reconstructions during a forward-leftward (150°) perturbation. A small subset of SF muscle synergies was recruited to reconstruct each muscle (left). Note that
multiple SF muscle synergies contributed to the reconstruction of muscles with multiple actions [i.e., W4 and W6 for rectus femoris (RFEM)], and separate SF
muscle synergies were recruited in antagonistic muscle pairs [W4 for TA, W2 for medial gastrocnemius (MGAS)]. In contrast, a majority of TF muscle synergies
was recruited to reconstruct each muscle (right). The same TF muscle synergies were used to recruit antagonistic muscle pairs. Gray lines, smoothed EMG; black
lines, reconstructed EMG; colored lines, individual muscle synergy contributions. REAB, rectus abdominus; TFL, tensor fascia lata; BFLH, biceps femoris, long
head; PERO, peroneus; LGAS, lateral gastrocnemius; EXOB, external oblique; GMED, gluteus medius; VLAT, vastus lateralis; SOL, soleus; ADMG, adductor
magnus.
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Classical synergy: critique of method

… no invariant set of synergies has emerged

confounds time, movement conditions, and trials

PCs are informative primarily about the geometry of the end-effector path.

and its variation with task 

[Steele,Tresch, Perreault: J Neurophysiol 2015]



Classical synergy: critique of concept

The variance across repetitions for a given task at 
given point in time = signature of stability

That variance is structured in the OPPOSITE way 
than predicted!



Classical synergy: critique of concept

motor commands

DoF/muscles

random 
variation here

leads to co-
variation here

random
variance here: 
uncorrelated



Concept of the UnControlled Manifold

more flexed here

less flexed here
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[Scholz, Schöner, EBR 126:289 (99)] 

the many DoF are 
coordinated such that 
changes that affect the task-
relevant dimensions are 
resisted against more than 
changes that do not affect 
task relevant dimension

leading to compensation



align trials in time

hypothesis about task variable

compute null-space (tangent to 
the UCM) 

predict more variance within 
null space than perpendicular to 
it

UCM synergy: data analysis
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Figure 4. Depiction of hypothetical clouds of data points combining separate trials and their 

relationship to the UCMs depicted in Figure 3. In Figure 4A, structure of the data is such that the 

major axes of the ellipses is oriented parallel to the UCMs, indicating that variability is compressed 

in the orthogonal direction, stabilizing the pointer position. Figures 4B-D depict possible effects of 

learning, described greater detail in the text. In B, both axes of the data ellipses are compressed. In 

Figure 4C, the orthogonal axis of the ellipses is preferentially compressed while the parallel axes 

increase in size.  In D, the parallel component is compressed more than the orthogonal component. 
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supplement hypothesis 
testing by checking for 
correlation (Hermann, 
Sternad...)

look for increase in variance of 
task variable when correlation 
within data is destroyed

UCM synergy: data analysis
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Example 1: pointing with 10 DoF arm at targets in 3D

UCM
orthog UCM

task variable: hand movement 
direction in space
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Example 2: shooting with 7 DoF arm at targets in 3D
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Example 2: shooting with 7 DoF arm at targets in 3D
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percent of trajectory
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gun spatial position gun orientation to target

[from Scholz, Schöner, Latash: EBR 135:382 (2000)]



Synergy: critique of concept

motor commands

DoF/muscles

variation here

leads to co-
variation 

here

variance 
induced here: 

is 
uncorrelated



UCM synergy: decoupling

arm in space

insert a perturbation here

compensatory change here

motor commands



[Martin, Reimann, Schöner, 2018]

A process account of the UCM 5

end-e↵ector is subjected to noise (see Equation 3). (2)
“Neural noise”: The transformation to a virtual joint
trajectory is subjected to noise (see Equation 7). (3)
“Muscle noise”: Muscle force generation is assumed noisy
(see Equation 9). Noise is modeled as additive, time-
correlated (Ornstein-Uhlenbeck) stochastic contributions,
psi(t), to the respective dynamics:

⌧ ·  ̇ = � + n · ⇣, (11)

where ⇣ is Gaussian white noise, ⌧ the correlation time,
and n noise strength. As an approximation, we neglect
state-dependence of noise sources (Harris and Wolpert,
1998). Noise at the higher levels of movement planning
was considered, but found to have minimal influence on
the trial-to-trial variability of the executed movement
trajectory and was thus dropped from consideration.
Because we model generates relatively fast and thus
largely ballistic movements, sensory noise and online
updating were neglected.

A fourth source of variance is the variation in the ini-
tial end-e↵ector position and joint configuration across
trials, that is observed in experiment. The three sources
of noise listed above do not account for that variance.
We modeled variance of the initial variance by adding a
random vector drawn from a uniform distribution to the
initial end-e↵ector position and then letting the joint-
configuration evolve in the presence of noise according
to Equations 7 and 8 while the timing dynamics, Equa-
tion 3, was clamped to zero.

2.6 Parameter values

The only parameters adjusted to fit data in this pa-
per are the strengths of the noise sources. These were
adjusted by hand to achieve appropriate orders of mag-
nitude of the resultant variance. In some simulations,
noise sources were selectively set to zero to demonstrate
their role.

All other model parameter values were taken from
Martin et al (2009, listed in the appendices of that pa-
per). We use the “reference parameter set” that was
found in that paper to account for a lage set of exper-
imental signatures. We did not adjust these parameter
values to account for the variance data. In some simu-
lations, we set particular terms to zero to probe their
e↵ect. This is explained for each simulation.

3 Experimental and simulation methods

3.1 Experimental protocol

Experiments on human movement were performed by
one of the authors (VM) at the laboratory of our late

S1
S2

S3

T1
T2 M4

M
3

M2

M
1

Fig. 2 Experimental setup and kinematics.

colleague Dr. John Scholz at the University of Delaware.
Three volunteers between 21 and 35 years of age volun-
teered to participate in this study. Participants gave in-
formed consent. All three participants were right-handed
and used their right arm to reach to the targets.

Participants sat on chair with a high back-rest. Trunk
movements were restrained by a chest-harness that was
firmly attached to the back-rest of the chair. Subjects
wore a hand-brace containing a stylus that was aligned
with the extended index finger. The table height was
adjusted so that the right arm rested on it horizontally
when in the starting position.

Participants performed reaching movements from
three di↵erent starting locations to two di↵erent tar-
gets (see Fig. 2). Targets T1 and T2 were positioned
at 90% arm length along two lines passing through the
right acromion process at angles of ±40� to the side.
Starting locations S1 and S2 were 7.8 cm anterior from
the sternum and the right acromion, starting location
S3 was at 50% arm length along a line passing through
the right acromion, rotated 20� rightwards. Four di↵er-
ent combinations of starting and target locations were
used: M1: S1!T1, M2: S2!T1, M3: S2!T2 and M4:
S3!T2. Subjects performed 25 repetitions in each con-
dition in randomized order.

Participants were asked to reach for the target with
the tip of the stylus as accurately as possible, but in one
continuous movement without pausing or correcting for
misses. The movement time was determined during test
trials in which participants were instructed to move as
quickly as possible. During the actual experiment, par-
ticipants were asked to maintain this movement time.
Movement time was measured and trials were repeated
if the movement time deviated by more than 5% from
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Fig. 7 End-e↵ector variance obtained from simulation when
a strong timing error is the only noise source in the model
(Movement 6).
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sterno-
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Fig. 8 Trajectories of the four joint angle across trials for
one movement of one participant.

ticipants and for the model simulations. This figure il-
lustrates di↵erences in joint trajectory variability across
participants. Some features emerge as common traits.
Many joint variance profiles are roughly bell shaped,
with a distinctive peak of variance in mid-movement.
This is similar to the temporal profiles of end-e↵ector
variance (for movement-extent, see Figure 5), suggest-
ing that some of the mid-movement variability might
be due to time-normalization as discussed previously.
A distinct feature is that for most joints, variance in-
creases over time and remains larger at the end of the
movement than at the beginning. This stands in con-
trast to the variance of end-e↵ector trajectories, in which
no such increase was observed (see Fig. 5). This suggest
that joint angle variance increases in those directions of
joint space that do not a↵ect the end-e↵ector variance,
i.e. along the task-equivalent manifold, but not in other

0.1

Normalized Time

Va
ria

nc
e 

(ra
d2 )

Normalized Time Normalized Time Normalized Time
sterno-clavicular shoulder elbow wrist

Subject 1 Subject 2 Subject 3 Model

Fig. 9 Joint angle variance computed across trials as a func-
tion of normalized time for movement 4 for each participant
and for the model. Joint angles are color coded as in Figure 8.

directions of joint space. Note, that the model captures
these features that are robust across participants.

4.3 UCM analysis of variance

To formalize the intuition that the variance of joint an-
gle trajectories conserves the end-e↵ector trajectory, we
employ the UCM method of analysis. The results are
shown in Figure 10 for all four movements, all partic-
ipants, and the model. The participants di↵er in the
absolute levels of the di↵erent components of variance,
but three main features that are invariant across par-
ticipants emerge. First, V? at movement termination
is similar or slightly smaller than V? movement on-
set. This component of variance has a peak in mid-
movement, which is of medium size for the task vari-
able movement direction and pronounced for the task
variable movement extent. Second, Vk is substantially
higher at movement termination than at movement on-
set, with a medium-sized peak in mid-movement. Third,
Vk is generally larger than V?, with the exception of
subject 3 in mid-movement for the movement extent
variable, where V? temporarily exceeds Vk. Because
movement extent captures the direction along which
the hand is moved, the peak of variance in V? reflects
the peak in variance of the hand’s position along its
path, indicating that this increase in variance is largely
due to time normalization (see Figure 7).

These three major characteristics are reproduced
very well by the model.

4.4 PCA approach to discovery of structure of variance

To probe inter-joint coordination further, we employ
PCA of the joint angle variance at the movement move-
ment termination. Figure 11 shows for each participant,
and each movement, the proportion of total variance
that is explained by consecutively adding principle com-
ponents (PCs). The first two components explain most
of the variance in all cases.
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Fig. 10 UCM analysis of variance for all three participants (columns 1 to 3) and for the model (column 4), as well as for all
four movements (rows). In each case, the solid lines are variance parallel to the UCM, the dashed lines are variance orthogonal
to the UCM. The UCM is computed either relative to the task variable movement extent (blue lines) or to the task variable
movement direction (purple lines).

The angles between each PC and the UCM for the
task variable end-e↵ector position in space are listed in
Table 1. Consistent with the UCM analysis, these angles
are near 0� for the first two PCs and near 90� for the
remaining two PCs. So the PCA approach to discovery
of the structure of variance is in close agreement with
the UCM hypothesis testing approach. Below we will

use this analysis to study the causes of the structure of
variance in the model.

4.5 What causes the UCM e↵ect?

The model enables us to identify possible causes of the
UCM structure of variance by varying model compo-



model

� = (�1, �2, �3, �4)T :

x = g(�), (14)

(the upper index T indicates the transpose, so that the joint configuration is a column

vector; the equations are listed in Appendix A). The model is derived assuming an

articulated rigid body with four revolute joints whose axes of rotation are perpendicular

to the two-dimensional plane of motion.

The equations of motion of the arm are derived from the Lagrangian equations

within the Screw theory framework (Murray et al., 1994). The general form of these

equations is

M(�) · �̈ + H(�, �̇) = Tm (15)

where M(�) is the inertial matrix of the rigid body, H(�, �̇) is the vector of interac-

tion torques (Coriolis and Centrifugal forces) and Tm is the vector of active torques

generated at the skeleton joints by muscle forces (all terms listed in Appendix B).

Simulations. The model was implemented in Matlab version 13 (MathWorks, Inc.,

2002) using the numerical Euler method to solve the di�erential equation. Appendices

E and C list the parameter values of the model which were used for all movements

anywhere in the workspace.

3 Experimental methods and analysis

Participants in the experiments were three healthy individuals from University of

Delaware community, 21 to 35 years of age. Participants gave informed consent before

participation. All participants were right handed and reached with their right arms to

the targets.

19

of the various arm segments are computed following (Hanavan, 1964). Data for the

scapular joint are not available and are estimated to be a quarter of the upper torso

biometrics data.

Parameter name Symbol Value Units

Body mass M 55 kg

First segment length l1 0.2024 m

Second segment length l2 0.3035 m

Third segment length l3 0.2586 m

Fourth segment length l4 0.1658 m

Table 2: Biometric parameters.

C Muscle model

This joint-muscle system contains two components, which represent respectively the

groups of all agonist and all antagonist muscles. Each component is characterized

by a nonlinear function, the “+” sign indicating half-wave rectification, so that each

component generates torques in only one direction, negative for the agonist component

and positive for the antagonist component. The associated torques reach zero at the

equilibrium lengths, �i = ⇥p
i = ⇥i � Co and �i = ⇥m

i = ⇥i + Co, which are o�-set

from a joint equilibrium length, ⇥i, by a constant amount of co-contraction, Co. The

combined torque, Ti, generated at joint i by the agonist and antagonist components

Ti = Kl ·
�
(e[Knl·(�i�⇥p

i )]+ � 1) � (e�[Knl·(�i�⇥m
i )]� � 1)

⇥

+ µbl · asinh(�̇i � ⇥̇i) + µrl · �̇i. (20)

43

biomechanical dynamics

muscle models
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This hypothesis says that when the estimated real joint configuration, θd,
deviates from the virtual joint configuration, λ, this leads to an update of
the virtual joint configuration within the null-space of the Jacobian (brought
about by projecting the difference onto the basis vectors of the null-space,
E T ). The same kind of mechanism may occur at the level of joint velocities
(second term). The real joint configuration must be sensed and estimated,
leading to processing delays (index d; see appendix D for details). This form
of back-coupling of the real into the virtual joint configuration dynamics
implies both stabilization of the joint configuration within the uncontrolled
manifold (through the terms dependent on λ and λ̇) and driving virtual self-
motion (when the terms (λ − θd) and (λ̇ − θ̇d) are different from zero). The
projection of the back-coupling term onto the null-space ensures that the
dynamics within the space of self-motion depends on only the components
of λ and λ̇ within that subspace, so that the range-space and null-space
remain decoupled.

That this neuronal dynamics is a closed description in the space of the
virtual joint configuration λ and velocity λ̇ is seen by replacing all references
to the end-effector velocity, v, and the self-motion velocity, s, by virtual joint
velocities using equations 2.5 and 2.6:

λ̈ =
(

J+ E
)
·
(

−βvJ · λ̇ + βvu − J̇ · λ̇

−βs1E T · (λ − θd) − βs2E T · (λ̇ − θ̇d).− Ė T · λ̇

)

. (2.11)

To implement the model, the matrices J(λ), E (λ), J̇(λ), and Ė T(λ) are com-
puted analytically.

2.7 Muscle-Joint Model. The virtual joint configuration λ and velocity
λ̇ drive the muscle joint systems. These are modeled by reducing a detailed,
nonlinear muscle model (Gribble et al., 1998) to its essentials, limiting the
number of parameters. First, we fuse all muscles acting onto a given joint
into an effective muscle joint model that covers both agonist and antagonist
activity. As a result, the descending commands are condensed into the
virtual joint angle, λ(t), and virtual joint velocity, λ̇(t). The state-dependent
generation of muscle torques at a given joint, i , can then be characterized
by a single function,

Ti (λ, λ̇, θ , θ̇ ) (2.12)

(listed in appendix C), where θ (t) and θ̇ (t) are the real joint angle and
velocity. At rest and in the absence of external forces, the muscle joint
system is at equilibrium at T = 0 and θ = λ. Depending on the time course
of the virtual joint trajectory, λ(t) and on the biomechanics of the arm, the
realized joint trajectory may deviate significantly from the virtual trajectory.
This is why taking into account the nonlinear dependence of muscle force
generation on muscle state is important (Gribble et al., 1998).

back-
coupling

timing signal

1380 V. Martin, J. Scholz, and G. Schöner

on the predicted state of the end effector, and this dependence turns the
movement state off at the end of the movement (see appendix D for details).
Inhibitory coupling between these two activation variables, mediated by a
sigmoidal nonlinearity, σ (u) = 1/(1 + exp[−ar u]), makes that only one of
the two variables can be activated at the same time.

2.5 Timing. We model the distributed neural networks that generate the
time course of the end effector along its path by a single, lumped neuronal
oscillator. The two-dimensional timing signal, u(t) = (u1, u2), determines
the virtual end-effector velocity, v(t) = (v1, v2), through

v̇ = −βv(v − u(t)), (2.2)

so that the virtual end-effector velocity tracks the timing signal. The indices
refer to the two Cartesian components of the end effector, and βv is a positive
constant. Although it is not neuronally realistic, we use the Hopf normal
form (Perko, 1991) as the simplest mathematical representation of a stable
limit cycle oscillator that stands for a class of neuronal dynamics that exhibit
this type of solution (Schöner, 2002). For each (“excitatory”) component, u,
the Hopf equation contains a second (“inhibitory”) component, z:

(
u̇i

żi

)

= σ (um) fh (ui , zi ) + σ (ur)βr

(
−ui

−zi

)

. (2.3)

Herein, the Hopf equation,

fh (ui , zi ) =
(

αh −ωh

ωh αh

)

·
(

ui − Ui

zi

)

−αh U2
i ·

(
(ui − Ui )2 + z2

i
)
·
(

ui − Ui

zi

)

, (2.4)

generates a stable limit cycle solution with cycle time, T = 2π/ωh , relaxation
time, 1/2αh , and amplitude, Ui . This oscillator is active while the initiation
system is in the movement state (σ (um) = 1). When the resting state is
activated (σ (ur) = 1), the timing signal has a stable fixed point at u = 0.

2.6 Neural Dynamics of the Virtual Joint Configuration. In this core
module of our model, the timing signal, u(t), is transformed into a virtual
joint trajectory, λ(t). This requires inversion of the Jacobian equation,

v(t) = J[λ(t)] · λ̇(t), (2.5)
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on the predicted state of the end effector, and this dependence turns the
movement state off at the end of the movement (see appendix D for details).
Inhibitory coupling between these two activation variables, mediated by a
sigmoidal nonlinearity, σ (u) = 1/(1 + exp[−ar u]), makes that only one of
the two variables can be activated at the same time.
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system is in the movement state (σ (um) = 1). When the resting state is
activated (σ (ur) = 1), the timing signal has a stable fixed point at u = 0.

2.6 Neural Dynamics of the Virtual Joint Configuration. In this core
module of our model, the timing signal, u(t), is transformed into a virtual
joint trajectory, λ(t). This requires inversion of the Jacobian equation,

v(t) = J[λ(t)] · λ̇(t), (2.5)
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This hypothesis says that when the estimated real joint configuration, θd,
deviates from the virtual joint configuration, λ, this leads to an update of
the virtual joint configuration within the null-space of the Jacobian (brought
about by projecting the difference onto the basis vectors of the null-space,
E T ). The same kind of mechanism may occur at the level of joint velocities
(second term). The real joint configuration must be sensed and estimated,
leading to processing delays (index d; see appendix D for details). This form
of back-coupling of the real into the virtual joint configuration dynamics
implies both stabilization of the joint configuration within the uncontrolled
manifold (through the terms dependent on λ and λ̇) and driving virtual self-
motion (when the terms (λ − θd) and (λ̇ − θ̇d) are different from zero). The
projection of the back-coupling term onto the null-space ensures that the
dynamics within the space of self-motion depends on only the components
of λ and λ̇ within that subspace, so that the range-space and null-space
remain decoupled.

That this neuronal dynamics is a closed description in the space of the
virtual joint configuration λ and velocity λ̇ is seen by replacing all references
to the end-effector velocity, v, and the self-motion velocity, s, by virtual joint
velocities using equations 2.5 and 2.6:

λ̈ =
(

J+ E
)
·
(

−βvJ · λ̇ + βvu − J̇ · λ̇

−βs1E T · (λ − θd) − βs2E T · (λ̇ − θ̇d).− Ė T · λ̇

)

. (2.11)

To implement the model, the matrices J(λ), E (λ), J̇(λ), and Ė T(λ) are com-
puted analytically.

2.7 Muscle-Joint Model. The virtual joint configuration λ and velocity
λ̇ drive the muscle joint systems. These are modeled by reducing a detailed,
nonlinear muscle model (Gribble et al., 1998) to its essentials, limiting the
number of parameters. First, we fuse all muscles acting onto a given joint
into an effective muscle joint model that covers both agonist and antagonist
activity. As a result, the descending commands are condensed into the
virtual joint angle, λ(t), and virtual joint velocity, λ̇(t). The state-dependent
generation of muscle torques at a given joint, i , can then be characterized
by a single function,

Ti (λ, λ̇, θ , θ̇ ) (2.12)

(listed in appendix C), where θ (t) and θ̇ (t) are the real joint angle and
velocity. At rest and in the absence of external forces, the muscle joint
system is at equilibrium at T = 0 and θ = λ. Depending on the time course
of the virtual joint trajectory, λ(t) and on the biomechanics of the arm, the
realized joint trajectory may deviate significantly from the virtual trajectory.
This is why taking into account the nonlinear dependence of muscle force
generation on muscle state is important (Gribble et al., 1998).
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where does this come from?

a neuron, n, encoding rate of change of     : 

�̈ = J+v̇ [+J̇+v ⇡ 0]

�̇ = J+v

v̇ = �v + uṅ = J+v̇

n = �̇�

<= insert timing signal

ṅ = J+(�v + u)

ṅ = J+(�J �̇+ u)

start with pseudo-inverse of: 

<= insert

v = J �̇

v = J �̇

ṅ = J+(�Jn+ u)

<= replace n = �̇

ṅ = �J+Jn+ J+u



where does this come from?

ṅ = �n+ (1 � J+J)n+ J+u

ṅ = �n+ n � J+Jn+ J+u

ṅ = �J+Jn+ J+u
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where does this come from?
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how does this do the UCM effect?

ṅ = �n+ (1 � J+J)n+ J+u

projection 
onto  null-

space

feed-forward 
from timing 
command 

within the range-space

=> stability within the range-space

ṅ = �n+ J+u

ṅ

n

J+u

attractor



how does this do the UCM effect?

ṅ = �n+ (1 � J+J)n+ J+u

projection 
onto  null-

space

feed-forward 
from timing 
command 

within the null-space

ṅ = �n+ n+ 0

ṅ = 0

=> no stability within the null-space

ṅ

n
no attractor



Conclusion
The problem of inverse kinematics is part of the 
broader “degree of freedom problem”

Neither robots nor human movement systems 
can use a simple 1:1 optimal solution, but must 
allow self-motion to avoid drifts into singular 
configurations

Humans have considerable self-motion and 
stabilize movement much less within the UCM 
(self-motion) space than orthogonal to it

Beyond the feed-forward few-to-many 
mappings, this involves compensatory coupling 
among motor commands. 


