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Recall from last lecture ...



Solutions and instabilities

Hinput driven solution (sub-threshold) vs. self-
stabilized solution (peak, supra-threshold)

Edetection instability
HEreverse detection instability
Hselection

Eselection instability
Ememory instability

mdetection instability from boost



Psychophysical evidence for the
detection instability

B perceptual hysteresis of motion detection
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stabilizing selection decisions
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behavioral signatures
of selection decisions

Bin most experimental situations, the correct selection
decision is cued by an “imperative signal” leaving no
actual freedom of “choice” to the participant (only the
freedom of “error™)

B reasons are experimental

Bwhen performance approaches chance level, then close
to “free choice”

Bbecause task set plays a major role in such tasks, | will
discuss these only a little later



one system of “free choice”

B selecting a new saccadic location

[O’Reagan et al., 2000]



saccade generation
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... so far we assumed

B that a single population of activation variable
mediates both the excitatory and the inhibitory
coupling required to make peaks attractors

*activation field u(x)

local excitation: stabilizes

m peaks against decay

global inhibition: stabilizes
eaks against diffusion
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But: Dale’s law

M says: every neuron forms with its axon only one

type of synapse on the neurons it projects onto

B and that is either excitatory or inhibitory

this is not
actually possible!
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2 layer neural fields

B inhibitory coupling is
mediated by inhibitory
interneurons that

B are excited by the excitatory layer

M and in turn inhibit the inhibitory

layer

—~
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[chapter 3 of the book]



2 layer Amari fields

T u(x,t)=-u(x,t)+h, +s(x,t)+ Jkuu (x—x")g(u(x’,t))dx’ - Jkuu (x—x")g(v(x’,t))dx’

T,U(X,t)=-u(x,t)+h, + jkw (x—x")g(u(x’,t))dx’

with projection kernels
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simulation



Implications

B the fact that inhibition
arises only after excitation ® Ezf:;’ltory
has been induced has

observable consequences in excitatory
the time course of decision layer .

making:

Initi ' i C ey inhibitory
M initially input-dominated inhibitory b
M early excitatory interaction layer o

M late inhibitory interaction

[figure: Wilimzig, Schneider, Schoner, Neural Networks, 2006]



Aktivierung

time course of selection

intermediate: dominated by excitatory interaction
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late: inhibitory interaction drives
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[figure: Wilimzig, Schneider, Schoner, Neural Networks, 2006]



=> early fusion, late selection

double target paradigm

I I I I I +
+ +
10 (A) — - ﬁ;+++f+i+++ e ! i
— TR o +—|:|+_‘:" =||;'HL + + +
(@)) #ﬁ;ﬁf%: %ﬂ—iji- o T o
) T +
O O +$§%ﬁi +++ 7
— +++Hﬁ£r+j+¢r + 4+ + 7
= fH"*er FHE H +
) T %ﬁ*‘f e +£F+ +F +
O _10 N -F|'+:|t|:i_ + -|—|-+-H-+ -Fl'+_|_ + N _
(qv] -
O | | | | |
&)
(© : :
@ target distractor paradigm
O T T T T T
C
c 107 (B) .
'-'3 ##$$¢+%£+ ++ + 4
+
q:) 0t #I ¢ D, VR .
O HEESFHE R T
ﬁ?ﬁiﬁ 1+ #f# H o+
++ #‘Jqf':#%l-i-qt_i_-l-_ﬁj'gq_‘i'-i-—i_ +  +
i #ﬁﬁﬁﬁ +L 4k
-10 Fof+ e Fo 4 +4ft P -
100 200 300 400 500 600 700

[figure: Wilimzig, Schneider, Schoner, Neural Networks, 2006]



fixation and selection
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2 layer fields afford oscillations

B => simulation

B (oscillatory states for enhanced coupling
among fields)

B (generic nature of oscillations)



studying selection decisions in the
laboratory

B using an imperative signal...



reaction time (RT) paradigm

Imperative
signal=
go signal

response

task set

time

RT




the task set

® s the critical factor in such studies of selection:
which perceptual/action alternative/choices are
available...

M e.g., how many choices
M e.g., how likely is each choice

M e.g, how “easy” are the choices to recognize/perform

B because the task set is known to the participant
prior to the presentation of the imperative signal,
one may think of the task set as a “preshaping” of
the underlying representation (pre=before the
decision)
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weak preshape
in selection

| specific (imperative)
input dominates and
drives detection
instability

[Wilimzig, Schoner, 2006]
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using preshape to account for
classical RT data

® Hick’s law: RT increases 3/\
with the number of !
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metric effect
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experiment:

metric effect
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preshaped activation field

maixmal activation

same metrics, different probability
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rare
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detection-selection: overcoming fixation

B detection can be like selection: initiating an action
means terminating the non-action=fixation or posture

B example: saccade initiation
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initiation vs. fixation

B such models account for the gap-step-overlap effect
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boost-induced detection instability
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boost-driven detection instability

Binhomogeneities in the field existing prior to a
signal/stimulus that leads to a macroscopic
response="preshape”

Bthe boost-driven detection instability amplifies
preshape into macroscopic selection decisions



... emergence of categories!

Bif we understand, how such inhomogeneities
come about, we understand the emergence of
categories...



this supports

categorical
behavior

B when preshape
dominates

[Wilimzig, Schoner, 2006]
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categorical responding

Bbased on categorical
memory trace and
boost-driven detection
instability
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distance effect

Bcommon in categorical tasks... e.g., decide which of
two sticks is longer => RT is larger when sticks are
more similar in length (1930s’)



interaction metrics-probability
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