Interactive CEDAR tutorial—Part 3

Mathis Richter
January 22, 2020

5 Spatial relational concepts

Our architecture can now extract the relative position between a target object
and a reference object. Let us try to have the architecture give a response
about what kind of spatial relation there is between target and reference,
for example “the red object is to the left of the green object”. But first,
we have to convert the representation of the relative spatial position into
a discrete relational concept (for example LEFT OF or ABOVE. How do we
arrive at discrete concepts like this? In DFT, we can create a representation
of a categorical concept through an individual neural dynamic node (zero-
dimensional field).

Add four such neural dynamic nodes to your architecture, using the step
node. Name the steps according to the relations they will represent: LEFT
OF, RIGHT OF, ABOVE, and BELOW. All of these neural nodes will eventually
receive input from the relational field. However, we only want the nodes to
become active if the peak in the relational field is in their respective area of
the field. For example, if the peak is to the left of the center, we only want
the node for the concept LEFT OF to become active. We do this by speci-
fying connection weights between the relational field and each node. Each
node has a unique connection pattern, which can be implemented using the
SpatialTemplate step.! To create the pattern between the relational field
and a node, feed both the output of that step and the output of the relational
field into a ComponentMultiply step. From there, feed the activation into a
Projection step (using the maximum setting), which projects it onto 0D, and
from there into a StaticGain step. From there, the activation is fed into the
node.

Tune the parameters of the four connection patterns so that the nodes
become active for appropriate peak positions in the relational field.

'Due to a bug in CEDAR, if you use the option invert sides, you will have to add
0.475 to the output. You can use the AddConstant step for that.



The four nodes now represent categorical concepts of relations. The de-
cision boundaries between the categories are determined by the connection
patterns. If we think of these concepts as connected to words that describe
the concept, for example the word “left” for the concept LEFT OF, we can
interpret the activation of a concept node as a response. Go through an
example where you “ask” the architecture: “Where is the red object with re-
spect to the green one?” until you get a response. (You can also use different
colors.) Take note of everything you have to manipulate in the architecture
for this to work.

6 Color concepts

Now, let us make this a bit more realistic. Until now, we have selected
objects based on their color, but we manipulated the input to the color field
manually. Let us instead add color concepts that we can then activate as if
we were feeding words (like “red”) to the architecture.

Add four more dynamic neural nodes (node) and name them ‘“red”,
“green”, “blue”, and “yellow”. These nodes will represent color concepts.
In order for the concepts to represent the correct colors, we will have to cre-
ate connection patterns from each node to the color field. Add a GaussInput
step, which we will use to approximate the pattern for one node. Connect
the output of that step, as well as the output of one of the nodes to a
ComponentMultiply step. Feed the output of the ComponentMultiply step
into the color field. Add a Boost step as input to the node; this way you
can activate the color concept by “verbal input” (by activating the boost).
Now, when the node is active, it projects a patterned connection into the
color field.

Set up the patterned connections for all four color concepts. Tune the
connection patterns so that the color concepts match the colors of the re-
spective objects in the scene. This is probably easiest when looking at the
activation of the three-dimensional color-space field.

Go through an example where you “ask” the architecture: “Where is the
red object with respect to the green one?” (You can also use different colors.)
Use only boost inputs? to interact with the architecture.

Could you also ask a question like: “What is to the left of the green
object”? Does the architecture have to be extended for this? In what way?
Go ahead and make that change, if you like, and go through the exemplary
question. :)

2If you give the boosts meaningful names, you can use the “Boost control” widget to
control your architecture.



