Programming Session I

Jan Tekülve
jan.tekuelve@ini.rub.de
\section*{Computer Science and Mathematics} Preparatory Course

30.09.2021

Brief Excursion on Number Systems

Number Systems

- Natural Numbers: $\mathbb{N}=\{0,1,2,3,4, \ldots\}$
- Integer Numbers: $\mathbb{Z}=$
- Rational Numbers: \mathbb{Q}
- Real Numbers: \mathbb{R}

Brief Excursion on Number Systems

Number Systems

- Natural Numbers: $\mathbb{N}=\{0,1,2,3,4, \ldots\}$
- Integer Numbers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Rational Numbers: \mathbb{Q}
- Real Numbers: \mathbb{R}

Brief Excursion on Number Systems

Number Systems

- Natural Numbers: $\mathbb{N}=\{0,1,2,3,4, \ldots\}$
- Integer Numbers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Rational Numbers: $\mathbb{Q}=\frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$
- Real Numbers: \mathbb{R}

Real Numbers

- Between two rational numbers is an infinite amount of rational numbers

Real Numbers

- Between two rational numbers is an infinite amount of rational numbers
- However: $\sqrt{2}$ is not a rational number

Real Numbers

- Between two rational numbers is an infinite amount of rational numbers
- However: $\sqrt{2}$ is not a rational number
- The irrational number $\sqrt{2}=1.4142135 \ldots$ is part of the real world:

Definitions

Number Systems

- Natural Numbers: $\mathbb{N}=\{0,1,2,3,4, \ldots\}$
- Integer Numbers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Rational Numbers: $\mathbb{Q}=\frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$
- Real Numbers: $\mathbb{R}=\mathbb{Q}+$ irrational numbers

Definitions

Number Systems

- Natural Numbers: $\mathbb{N}=\{0,1,2,3,4, \ldots\}$
- Integer Numbers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Rational Numbers: $\mathbb{Q}=\frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$
- Real Numbers: $\mathbb{R}=\mathbb{Q}+$ irrational numbers

Honorable Mention

- Complex Numbers: $\mathbb{C}=a+i b$, where $a, b \in \mathbb{R}$ and $i=\sqrt{-1}$

Number Systems

Writing Files

- Opening a file
\#This creates the file if it does not exist fileObject $=$ open("fileOutput.txt", "w")
\#Option 'w' will overwrite existing files \#Use the option 'a' to append to a file instead
- Writing to the file
\#Add \n to end a line and \t to create a tab fileObject.write("Hello you! \n")
- Close the file after usage:
fileObject.close()

If-Else

- If and else are organized by indentation and colons

```
x = 3.5
is_x_4 = False
if x == 4 : #if <condition> :
    is_x_4 = True #indented block is called only
    print("x is 4") #if <condition> applies
else : #else is on the same level as if
    print("x is not 4")
#Regular program continues here
```


While Loops

- Print the numbers from 1 to 10

```
goal = 5 #define two variables for the exit condition
test = 0
while test != goal:
    test = test +1 # Increase test by 1
    print(test) # prints 1,2,3,4,5 a number per loop
```


The List Datatype

- Lists allow to manage a collection of variables

```
names = ["Alice","Bob","Carl","Dora"]
numbers = [1,2,3,5,8]
```

- Accessing and modifying elements in a lists

```
print(names) #['Alice','Bob','Carl','Dora']
single_name = names[2] #single_name = 'Carl'
first_element = numbers[0] #first_element = 1
last_name = names[len(names)-1]#last_name = 'Dora'
names[1] = "Bert" #names ['Alice','Bert','Carl','Dora']
```


Operations on Lists

- Example Operations

```
numbers = [1,2,3,5,8]
names = ["Alice","Bob","Carl"]
count = len(names) #count=3
names.append("Daisy") #['Alice','Bob','Carl','Daisy']
numbers2 = [13,21,34]
numbers3 = numbers + numbers2 #[1,2,3,5,8,13,21,34]
subset = numbers3[2:5] #[3,5,8]
#characters from position 2 (included) to 5 (excluded)
```


Helpful Functions

- The random module

```
import random #import the module similar to import math
#assigns dice_roll a number between 1 and 6
dice_roll = random.randint(1,6)
#assigns coin_flip either a 0 or 1
coin_flip = random.randint(0,1)
```

- Deleting list elements

```
names = ["alf","donald","charly brown","bud spencer"]
del names[1] #deletes the second element
print(names) # ["alf","charly brown","bud spencer"]
```


Tasks: Control Statements

1. Write a Guessing Game, where the script chooses a random integer between 0 and 20 and the user has to guess it. With each guess the user gets told if his guess was higher or lower than the desired number.

- Start by assigning a random integer to a variable using random.randint(0,20)
- Create a while-loop in which the user is asked for a number
- Depending on the number input tell the user whether his guess was smaller,higher or equal to the desired value
- Think about how to end the while-loop

Tasks: Lists

2. Write a script that returns the biggest element in a list

- Create a list with arbitrary numbers of your choice
- Loop through the list with a for loop
- In each loop compare the current list element with your current estimate of the highest number

3. Write a script that looks for a specific element in the list and deletes it

- Loop through the list with a for-loop and store the elements position in a variable
- After the for loop remove the element at that position with the del command

4*. Write a script that takes a list and transfers its elements to a second list in sorted order.

- Look for the smallest element in the first list. Write it to the second list. Delete it in the first list. Repeat.

Tasks: Writing to a File

5^{*}. Write a script that writes down the list from yesterday's task 3 to a file:

- Start by opening the file
- First write "Coefficients: $\backslash \mathrm{n}$ " to the file to create the first line
- Write your coefficients in the second line separated by commas
- Write "Values:" to the next line
- Run a loop through your list and in each loop write down x and the function value $g(x)$ stored in the list

File Content Sketch:
Coefficients:
$a_{3}, \quad a_{2}, \quad a_{1}, \quad a_{0}$

Values:

0,		$g(0)$
1,		$g(1)$
	\vdots	
19,		$g(19)$
20,		$g(20)$

