Dynamic Field Theory:
Neural basis

Gregor Schoner
gregor.schoener(@ini.rub.de



mailto:gregor.schoener@ini.rub.de

Activation fields... peaks as units
of representation

information, probability, certainty
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Formalizing the link between
DFT and neurophysiology

® What do neurons “represent’”?

B notion of a tuning curve that links something
outside the nervous system to the state of a

neuron (e.g. through firing rate) )
M based on the forward picture in which é
B the connectivity from the sensory surface g
B or the connectivity from the neuron to Feature dimension

the motor surface

M determine the activity of the neuron



Example tuning curve in primary
visual cortex (monkey)

S (orientation angle in degrees)

[Hubel,Wiesel, 1962]



Example: tuning curve in primary
motor cortex (monkey)
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[Georgopoulos, Schwartz, Kalaska, 1986]



What do populations of neurons represent!?
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Do all activated neurons contribute?
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=> population code

B similar work in MT

M Purushothaman, G., & Bradley, Da. C. (2005). Neural population code for

fine perceptual decisions in area MT. Nature Neuroscience, 8(1), 99—
1 06.

H consensus, that localized populations of neurons best
correlated with behavior

M there are subtle issues of noise and correlation in populations

M e.g., Cohen, Newsome ] Neurosci 2009: about 1000 neurons needed to
match behavioral performance

M review: Shamir, M. (2014). Emerging principles of population coding: In
search for the neural code. Current Opinion in Neurobiology, 25, 140—148.



Neurophysiological grounding of DFT

B Example |: primary visual cortex Al7 in the cat,
population representation of retinal location

Jancke, Erlhagen, Dinse, Akhavan, Giese, Steinhage, Schoner JNsci 19:9016 (99)



M determine RF profile for each cell

Mit’s center determines what that neuron
codes for

M compute a distribution of population
activation by superposing RF profiles
weighted with current neural firing rate

response plane




B The current response refers to a
stimulus experienced by all neurons

M Reference condition: localized points

fligh N
or light elementary stimuli
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M result: population distribution of
activation defined over retinal space
= representation of visual location




B => does a decent job estimating retinal position

current stimulus: range of retinal field
square of light sampled by neurons

0.4°




M Extrapolate measurement device to new conditions

Me.g., time resolved

two different
stimulus
locations

time

30 - 40 ms 40 - 50 ms 50 - 60 ms 60 - 70 ms 70 - 80 ms




®or when complex stimuli are presented (here: two
spots of light)

response to composite increasing distance between the two squares of light
stimuli

.
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superposition of responses to each elemental
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Bby comparing DPA of composite stimuli to
superposition of DPAs of the two elementary stimuil
obtain evidence for interaction

B carly excitation

B late inhibition



activation level in the DPA
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model by dynamic field:

A B C
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Neurophysiological grounding of DFT

® Example 2: primary motor cortex (M1), population
representation of movement direction of the hand

Bastian, Riehle, Schoner, 2003



Task

B center-out movement

O O
task for macaque 20 O
. . O O
® with varying amounts of / \\ s s
prior information © o 9 0
O —>b0 O © ‘0 0-@:
O @ O O
\ / 3 2
O @
cO O ©
O @
| i |
Start trial 500ms PS 1000 ms RS MVT
movement . PP =+ & nRAT—

direction

Bastian, Riehle, Schoner, 2003



Tuning of neurons in Ml to
movement direction

m trials aligned by go signals, ordered by reaction time

Complete Information

lili O3 -1

\\ hand lands on target
hand lifts off start button



Distribution of Population Activation (DPA)

Distribution of population activation =
2 tuning curve * current firing rate

neurons
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activation
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[Bastian, Riehle, Schoner, 2003]



Blook at temporal
evolution of DPA

Bor DPAs in new
conditions, here: DPA
reflects prior
information
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Theory-Experiment
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[Bastian, Riehle, Erlhagen, Schoner, 98]



Distributions of Population Activation
are abstract

Eneurons are not localized within DPA!

Hcortical neurons really are sensitive to many
dimensions

B motor: arm configuration, force direction

Myvisual: many feature dimensions such as spatial frequency,
orientation, direction...

m=> DPA is a projection from that high-
dimensional space onto a single dimension



... back to the activation fields

4 activation
field

AN | \_dimension
® that are “defined” over the I I I I I I T

+ input from the

appropriate dimension just as —j\/L
population code is...

dimension

A activation

®in building DFT models, we must
ensure that this is actually true by RO N motor

| dimension, r

setting up the appropriate input/ |

output connectivity
A\
| motor
A state, r




