Attractor dynamics approach to behavior generation: vehicle motion

Gregor Schöner, INI, RUB

Basic ideas of attractor dynamics approach

behavioral variables

- time courses from dynamical system: attractors
- tracking attractors
- bifurcations for flexibility

Behavioral variables: example

vehicle moving in 2D: heading direction

Behavioral variables: example

constraints: obstacle avoidance and target acquisition

Behavioral variables

- describe desired motor behavior
- "enactable"
- express constraints as values/value ranges
- appropriate level of invariance

- generate behavior by generating time courses of behavioral variables
- generate time course of behavioral variables from attractor solutions of a (designed) dynamical system
- that dynamical system is constructed from contributions expressing behavioral constraints

Behavioral dynamics: example

behavioral constraint: target acquisition

Behavioral dynamics: example

behavioral constraint: obstacle avoidance

specified value

📕 strength

📃 range

multiple constraints: superpose "force-lets"

decision making

between targets

an example closer to "real life": bifurcations in obstacle avoidance and target acquisition

constraints not in conflict

Constraints in conflict

transition from "constraints not in conflict" to "constraints in conflict" is a bifurcation

- Such design of decision making is only possible because system "sits" in attractor.
- This reduces the difficult design of the full flow (ensemble of all transient solutions) of non-linear dynamical systems to the easier design of attractors (bifurcation theory).

- But how may complex behavior be generated while "sitting" in an attractor?
- Answer: force-lets depend on sensory information and sensory information changes as the behavior unfolds

[Schöner, Dose, 1992]

[Schöner, Dose, Engels, 1995]

... this is a "symbolic" approach

- in the sense that we talk about "obstacles" and "targets" as objects, that have identity, preserved over time...
- making demands on perceptual systems...
- in the implementation we see that these demands can be relaxed...
- next week we'll look at how a "subsymbolic" attractor dynamics approach may work

Attractor dynamics model of human navigation

Fajen et al, International Journal of Computer Vision 54(1/2/3), 13–34, 2003

human locomotion

Bill Warren and Bret Fajen have used the attractor dynamics approach to account for how humans locomote in virtual reality

human locomotion to goal

- participants begins to walk
- after walking 1 m, a goal appears at 5, 10, 15, 20, or 25 deg from the straight heading at a distance of 2, 4, or 8 m from participant...
- participants are asked to walk toward the goal

human locomotion to goal

- turning rate increased with increasing goal angle
- => turning rate decreased with increasing distance form goal

human locomotion: obstacle

- humans walk toward goal at 10 m distance
- after walking I m, an obstacle appears at 1, 2, 4, or 8 deg from heading and a distance of 3, 4, or 5 m

human locomotion: obstacle

- turning rate away from obstacle decreased with obstacle angle
- => and with obstacle distance

model

heading direction as dynamical variable

model

- first order dynamics dot phi = f(phi) not quite consistent with dependence on initial heading...
- but overall shape of phidot vs phi and distance dependence consistent with attractor dynamics approach to heading direction

attractor dynamics model

solution: 2nd order dynamics in heading

inertial term damping term b ² + ⁶ရာ၊ ၃ - ရာ၊ ၃- ရ attractor goal heading k₉* ∲ 0 * 0 $\ddot{\phi} = -b\dot{\phi} - k_g(\phi - \psi_g)(e^{-c_1d_g} + c_2)$ 0^L -12└ -90 -45 0 45 90 2 10 8 φ-ψ_g (deg) d_g (m) $+k_o(\phi-\psi_o)(e^{-c_3|\phi-\psi_o|})(e^{-c_4d_o})$ ko*φ-vo*e^{-c}3lφ-ψo| С d 0.8 р⁶ 0.6 У 0.4 repellor obstacle heading 0.2 0 0 -4∟ -90 -45 0 45 90 2 8 10 4 6

φ-ψ_o (deg)

d_o (m)

attractor dynamics model

- approximation: inertia to zero: find first order dynamics with time scale b
- compute fixed points and stability: fixed points of first order dynamics are fixed points too and have the matching stability

$$\begin{split} \ddot{\phi} &= -b\dot{\phi} - k_g(\phi - \psi_g)(e^{-c_1d_g} + c_2) & \text{attractor goal heading} \\ &+ k_o(\phi - \psi_o) \left(e^{-c_3|\phi - \psi_o|}\right) (e^{-c_4d_o}) & \text{repellor obstacle heading} \end{split}$$

model-experiment match: goal

model-experiment match: obstacle

experiment

model

model: paths

model-exp: decision making

Conclusion

the attractor dynamic model can account for human locomotory behavior in target acquisition and obstacle avoidance