Attractor dynamics approach to behavior generation: vehicle motion

Gregor Schöner, INI, RUB

Basic ideas of attractor dynamics approach

behavioral variables
\square time courses from dynamical system:
attractors
\square tracking attractors
bifurcations for flexibility

Behavioral variables: example

vehicle moving in 2D: heading direction

Behavioral variables: example

constraints: obstacle avoidance and target acquisition

Behavioral variables

describe desired motor behavior
\square "enactable"
express constraints as values/value ranges
\square appropriate level of invariance

Behavioral dynamics

\square generate behavior by generating time courses of behavioral variables
\square generate time course of behavioral variables from attractor solutions of a (designed) dynamical system
\square that dynamical system is constructed from contributions expressing behavioral constraints

Behavioral dynamics: example

\square behavioral constraint: target acquisition

Behavioral dynamics: example

\square behavioral constraint: obstacle avoidance

Behavioral dynamics

\square each constribution is a "force-let" with
\square specified value
\square strength
\square range

Behavioral dynamics

■ multiple constraints: superpose "force-lets"
\square fusion

Behavioral dynamics

decision making

Behavioral dynamics

\square Bifurcations switch between fusion and decision making

Behavioral dynamics

\square an example closer to "real life": bifurcations in obstacle avoidance and target acquisition
constraints not in conflict

Behavioral dynamics

constraints in conflict

Behavioral dynamics

transition from "constraints not in conflict" to "constraints in conflict" is a bifurcation

Behavioral dynamics

- Such design of decision making is only possible because system "sits" in attractor.

This reduces the difficult design of the full flow (ensemble of all transient solutions) of non-linear dynamical systems to the easier design of attractors (bifurcation theory).

Behavioral dynamics

\square But how may complex behavior be generated while "sitting" in an attractor?
\square Answer: force-lets depend on sensory information and sensory information changes as the behavior unfolds

[Schöner, Dose, I992]

[Schöner, Dose, Engels, I995]
... this is a "symbolic" approach

- in the sense that we talk about "obstacles" and "targets" as objects, that have identity, preserved over time...

■ making demands on perceptual systems...

- in the implementation we see that these demands can be relaxed...
- next week we'll look at how a "subsymbolic" attractor dynamics approach may work

Attractor dynamics model of human navigation

Fajen et al, International Journal of Computer Vision 54(I/2/3), 13-34, 2003 2003

human locomotion

- Bill Warren and Bret Fajen have used the attractor dynamics approach to account for how humans locomote in virtual reality

human locomotion to goal

- participants begins to walk
- after walking I m, a goal appears at 5, $10,15,20$, or 25 deg from the straight heading at a distance of 2,4 , or 8 m from participant...
- participants are asked to walk toward the goal

human locomotion to goal

- => turning rate increased with increasing goal angle

- => turning rate decreased with increasing distance form goal

human locomotion: obstacle

- humans walk toward goal at 10 m distance
- after walking I m, an obstacle appears at I, 2, 4, or 8 deg from heading and a distance of 3,4 , or 5 m

human locomotion: obstacle

- => turning rate away from obstacle decreased with obstacle angle
- => and with
obstacle distance

model

- heading direction as dynamical variable

model

- first order dynamics dot phi $=f($ phi) not quite consistent with dependence on initial heading...
- but overall shape of phidot
 vs phi and distance dependence consistent with attractor dynamics approach to heading direction

attractor dynamics model

- solution: 2 nd order dynamics in heading
inertial term
damping term
attractor goal heading
$\ddot{\phi}=-b \dot{\phi}-k_{g}\left(\phi-\psi_{g}\right)\left(e^{-c_{1} d_{g}}+c_{2}\right)$

$$
+k_{o}\left(\phi-\psi_{o}\right)\left(e^{-c_{3}\left|\phi-\psi_{o}\right|}\right)\left(e^{-c_{4} d_{o}}\right)
$$

repellor obstacle heading

attractor dynamics model

- approximation: inertia to zero: find first order dynamics with time scale b
- compute fixed points and stability: fixed points of first order dynamics are fixed points too and have the matching stability
$\ddot{\phi}=-b \dot{\phi}-k_{g}\left(\phi-\psi_{g}\right)\left(e^{-c_{1} d_{g}}+c_{2}\right)$ attractor goal heading $+k_{o}\left(\phi-\psi_{o}\right)\left(e^{-c_{3}\left|\phi-\psi_{o}\right|}\right)\left(e^{-c_{4} d_{o}}\right)$ repellor obstacle heading

model-experiment match: goal

experiment

(a)

model

(a)

(b)

model-experiment match: obstacle

model: paths

model-exp: decision making

- inside vs. outside path

(a)

Conclusion

the attractor dynamic model can account for human locomotory behavior in target acquisition and obstacle avoidance

