Autonomous robotics
April 14, 2023

Exercise 1 Dynamical Systems Tutorial

Please upload solutions on the web page before midnight on April 21 (Friday).

1. Solve the linear differential equation

$$
\begin{equation*}
\dot{x}=-\alpha x \tag{1}
\end{equation*}
$$

analytically. If unfamiliar, get help from a text book or online resource.
2. Plot the solution as a function of time by setting $\alpha=1 /$ second, using a few discrete times, $t=0,1,2, \ldots 10$ seconds. Or evaluate the function numerically on the computer in a program of your choice. Make this plot for two values of the initial condition, $x(0)$.
3. From the analytical solution, determine the moment in time, τ at which $x(t)$ has fallen to $1 / e$ of its initial value, $x(0)$. Does this time depend on $x(0)$? Answer the same question for the hyperbolic decay, $x(t)=x(0) /(1+t)$.
4. Plot this dynamics Eq (1) and designate the fixed point. Make the same drawing for a dynamics with the same slope and a fixed point at $x_{0}>0$. Write down the equation for that dynamics.
5. Make a plot of this nonlinear differential equation

$$
\begin{equation*}
\dot{x}=\beta-x^{2} . \tag{2}
\end{equation*}
$$

Compute its fixed points as a function of β and plot this function. Mark the fixed points in the dynamics as attractors or repellors.

