## Attractor dynamics approach to behavior generation: vehicle motion Part 2: sub-symbolic approach

Gregor Schöner
Institute for Neural Computation, RUB

## Behavioral dynamics

constraints: obstacle avoidance and target acquisition



#### Behavioral dynamics

so far, we had a "symbolic" approach to behavioral dynamics: the "obstacles" and "targets" were objects, that have identity, are preserved over time...and are represented by contributions to the behavioral dynamics



## "symbolic" approach

requires high-level knowledge about objects in the world ("obstacles", "targets", etc) and perceptual systems that extract parameters about these...

is that necessary?



#### Targets....

- are segmented... in the foreground
- => neural fields to perform this segmentation from low-level sensory information: Dynamic Field Theory ...



#### Obstacles ...

- obstacles need not be segmented ... does not matter if obstacles are one or multiple objects...
- avoidance is about free space...



## "sub-symbolic" approach

use low-level sensory information directly, Δψ without first detecting, segmenting, and estimating objects



- $\blacksquare$  each sensor mounted at fixed angle  $\theta$
- $\blacksquare$  that points in direction  $\Psi = \Phi + \theta$  in the world
- erect a repellor at that angle



$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right]$$
  $i = 1, 2, \dots, 7$ 

Note: only  $\Phi-\Psi=-\theta$  shows up, which is constant!

=> force-let does not depend on Φ!



2 VII obst

$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right] \qquad i = 1, 2, \dots, 7$$
$$\lambda_i = \beta_1 \cdot \exp\left[-\frac{d_i}{\beta_2}\right]$$

Repulsion strength decreases with distance, d\_i

=> only close obstacles matter



$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right]$$

$$\sigma_i = \arctan\left[\tan\left(\frac{\Delta\theta}{2}\right) + \frac{R_{\text{robot}}}{R_{\text{robot}} + d_i}\right].$$

Cangular range

Properties on sensor

Cone Δθ and size over distance



 $\Delta\theta$ 

=> as a result, range becomes wider as obstacle moves closer



summing contributions from all sensors

$$\frac{d\phi}{dt} = f_{\text{obs}}(\phi) = \sum_{i=1}^{7} f_{\text{obs},i}(\phi)$$



- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?



- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?



- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?





[from: Bicho, Schöner]

=> dynamics invariant!

## Behavioral Dynamics





#### **Bifurcations**

bifurcation as a function of the size of the opening between obstacles





- bifurcation as a function of the size of the opening between obstacles
- =>tune distance dependence of repulsion so that bifurcation occurs at the right opening



#### **Bifurcations**



#### Bifurcation on approach to wall

- initially attractor dominates: weak repulsion
- bifurcation
- then obstacles dominate: strong repulsion and total repulsion



#### Bifurcation on approach to wall

same with small opening



Bifurcation on approach to wall

at larger
 opening:
 repulsion
 weak all the
 way through:
 attractor
 remains stable



## Tracking attractor

as robot
 moves around
 obstacles,
 tracks the
 moving
 attractor



## Tracking attractor

as robot
moves in
between
obstacles, the
dynamics
changes but
not the
attractor



# Tracking attractors















#### Observation:

- even though the approach is purely local, it does achieve global tasks
- based on the structure of the environment!



#### Observation

different solutions may emerge depending on the environment...

## Other implementations

autonomous wheel-chair by Pierre Mallet, Marseille









[Pierre Mallet, Marseille]

#### other implementations

Estela Bicho's cooperative robots... => exercises...

#### Conclusion

- attractor dynamics works on the basis lowlevel sensors information
- as long at the force-lets model the sensorcharacteristics well enough to create approximate invariance of the dynamics under transformations of the coordinate frames

# Second order attractor dynamics

source: Bicho, Schöner, Robotics and Autonomous Systems 21:23-35 (1997)

# Second order dynamics

- idea: go to even lower level sensory-motor systems:
  - a sensor that only knows there is a target or an obstacle on the left vs. on the right...
  - but is not able to estimate the heading of either
  - a motor system that is not calibrated well enough to steer into a given heading direction in the world



#### behavior variable

- turning rate omega rather than heading direction
- can be ``enacted'' by setting set-points for velocity servo controllers of each motor
- target: information about target being to the left, to the right, or ahead, but no calibrated bearing, psi, to target
- obstacle: turning rate
  - to the right when obstacle close and to the left
  - to the left when obstacle close and to the right
  - zero when obstacle far

# dynamics of turning rate: obstacle avoidance

- pitch-fork normal form (to get left-right symmetry)
- but symmetry potentially broken by additive constant: biases bifurcation toward left or toward right

$$\dot{\omega} = (\alpha + \frac{1}{2}\pi)c_{\text{obs}}F_{\text{obs}} + \alpha\omega - \gamma\omega^3$$

$$\dot{\omega} = (\alpha + \frac{1}{2}\pi)c_{\text{obs}}F_{\text{obs}} + \alpha\omega - \gamma\omega^3$$





in absence of obstacle in forward direction (distance large): alpha negative, constant zero

(a) dynamics of turning rate



in presence of obstacle in forward direction, symmetric bifurcation to desired avoidance rotations: alpha positive, constant zero





in presence of obstacle to the right of current heading: tangent bifurcation removes attractor at negative omega, alpha negative, constant negative



#### mathematical form

compute constant and alpha from obstacle force lets

$$\dot{\omega} = (\alpha + \frac{1}{2}\pi)c_{\text{obs}}F_{\text{obs}} + \alpha\omega - \gamma\omega^3$$



$$F_{\text{obs}} = \sum_{i} \lambda_{i} (\phi - \psi_{i}) \exp \left[ -\frac{(\phi - \psi_{i})^{2}}{2\sigma_{i}^{2}} \right]$$

$$\lambda_{i} = \beta_{1} \exp[-d_{i}/\beta_{2}]$$

$$\sigma_{i} = \arctan \left[ \tan \left( \frac{\Delta \theta}{2} \right) + \frac{R_{\text{robot}}}{R_{\text{robot}} + d_{i}} \right]$$

$$V = \sum_{i} \left( \lambda_{i} \sigma_{i}^{2} \exp \left[ -\frac{\theta_{i}^{2}}{2\sigma_{i}^{2}} \right] - \frac{\lambda_{i} \sigma_{i}^{2}}{\sqrt{e}} \right)$$

$$\alpha = \arctan[c \ V]$$

# bifurcations as an obstacle is approached





# dynamics: target acquisition

- a sensor for a target on the left sets an attractor at positive turning rate, strength graded with intensity
- a sensor for a target on the right sets an attractor at negative turning rate, strength graded with intensity



#### mathematical formulation

- force-let of each target sensor
- summed to total dynamics

$$g_i(\omega) = -\frac{1}{\tau_{\omega}}(\omega - \omega_i) \exp\left[-2\frac{(\omega - \omega_i)^2}{\Delta\omega^2}\right].$$
(*i* = right or left)

$$g_{\rm left}(\omega) + g_{\rm right}(\omega)$$

# putting it to work on a simple platform

- Rodinsky!
- circular platform with passive caster wheel
- two (unservoed) motors
- 5 IR sensors
- 2 LDR's
- microcontrollerMC68HCA11A0Motorola (32 K RAM),8 bit



# example trajectories



## demonstration



## why does it work?

- here the dynamics exists instantaneously while vehicle is heading in a particular direction
- while the vehicle is turning under the influence of the corresponding attractor for turning rate, the dynamics is changing!
- typically undergoing an instability as vehicle's heading turns away from an obstacle...

# what is the benefit of using second order dynamics?

- ability to integrate constraints which do not specify a particular heading direction, only turning direction
- ability to impose a desired turning rate => enhances agility in turning
- ability to control the second derivative of heading direction=angular acceleration: enables taking into account vehicle dynamics

## quantitative comparison



[Hernandes, Becker, Jokeit, Schöner, 2014]

## Summary

- behavioral variables
- attractor states for behavior
- attractive force-let: target acquisition
- repulsive force-let: obstacle avoidance
- bistability/bifurcations: decisions
- can be implemented with minimal requirements for perception