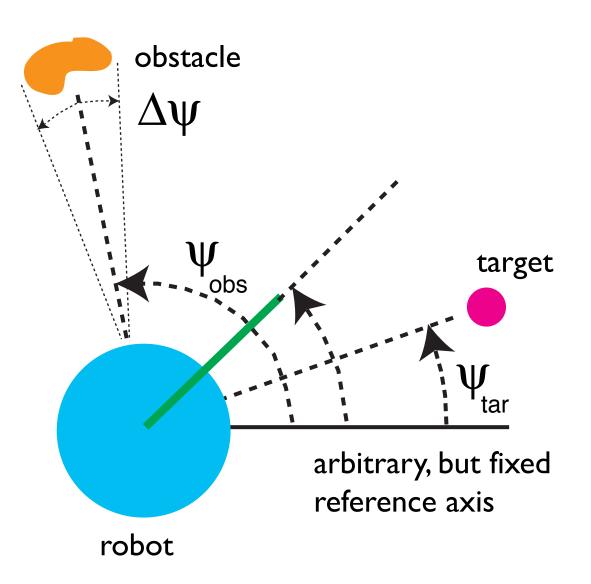
Attractor dynamics approach to behavior generation: vehicle motion Part 2: sub-symbolic approach

Gregor Schöner
Institute for Neural Computation, RUB

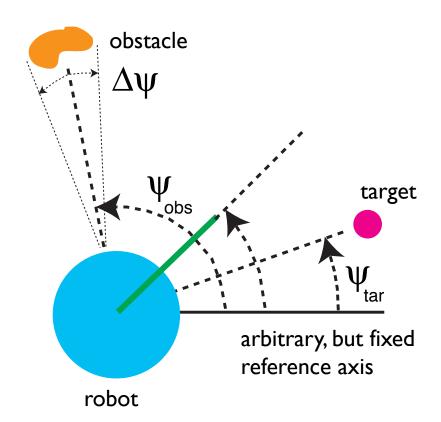
Behavioral dynamics

constraints: obstacle avoidance and target acquisition



Behavioral dynamics

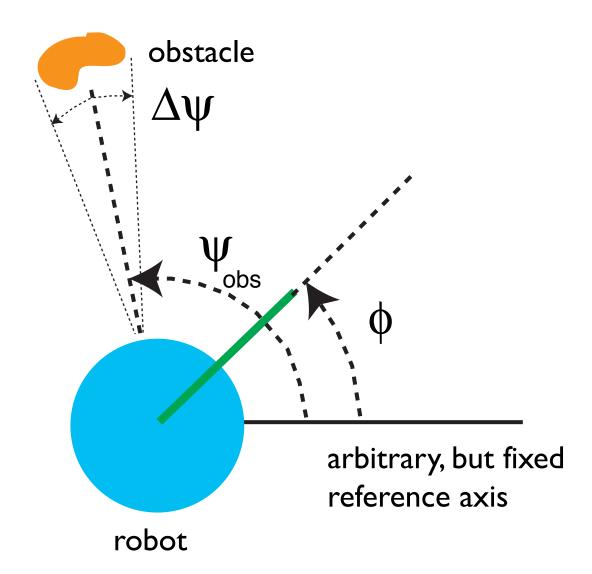
so far, we had a "symbolic" approach to behavioral dynamics: the "obstacles" and "targets" were objects, that have identity, are preserved over time...and are represented by contributions to the behavioral dynamics



"symbolic" approach

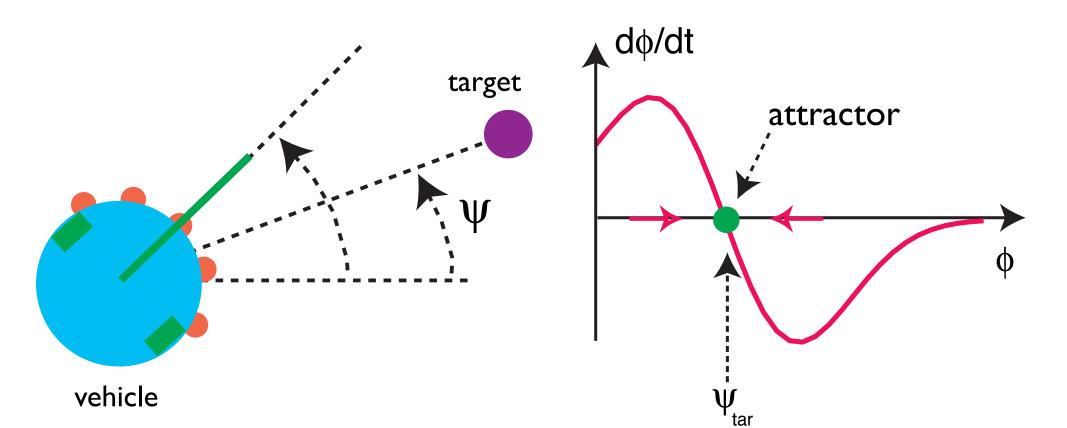
requires high-level knowledge about objects in the world ("obstacles", "targets", etc) and perceptual systems that extract parameters about these...

is that necessary?



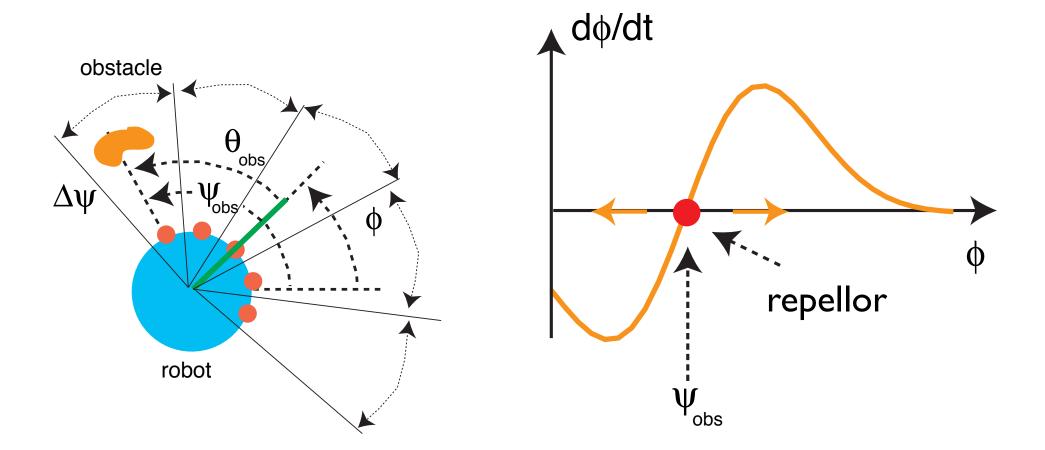
Targets....

- are segmented... in the foreground
- => neural fields to perform this segmentation from low-level sensory information: Dynamic Field Theory ...



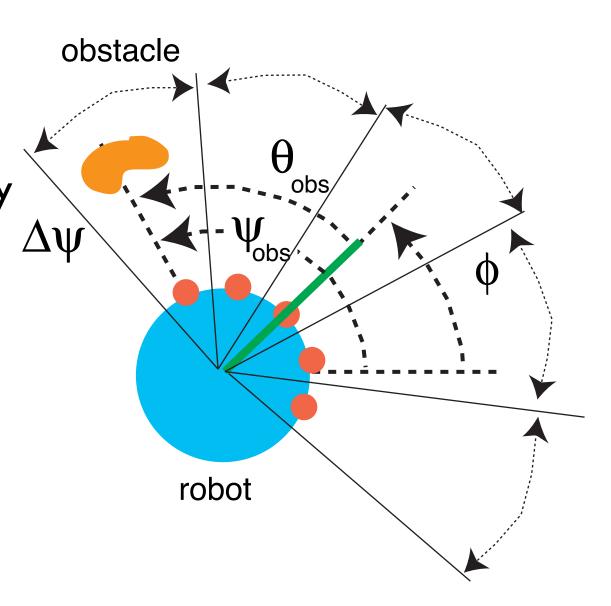
Obstacles ...

- obstacles need not be segmented ... does not matter if obstacles are one or multiple objects...
- avoidance is about free space...



"sub-symbolic" approach

use low-level sensory information directly, Δψ without first detecting, segmenting, and estimating objects



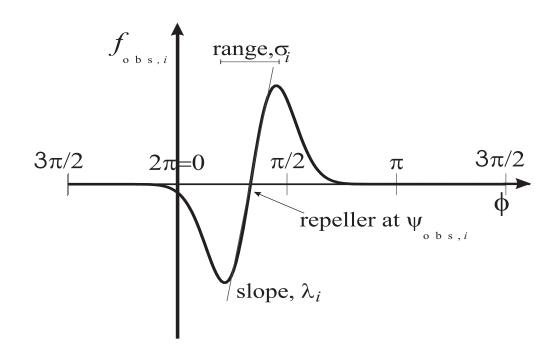
- \blacksquare each sensor mounted at fixed angle θ
- \blacksquare that points in direction $\Psi = \Phi + \theta$ in the world
- erect a repellor at that angle



$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right]$$
 $i = 1, 2, \dots, 7$

Note: only $\Phi-\Psi=-\theta$ shows up, which is constant!

=> force-let does not depend on Φ!

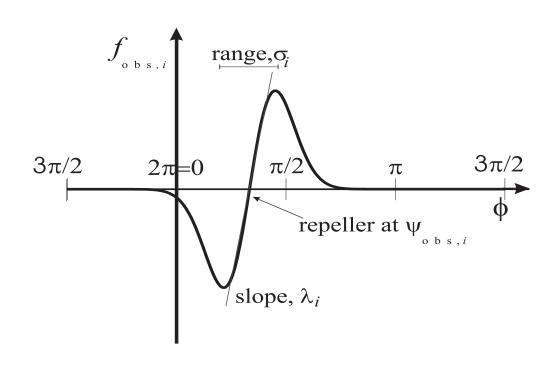


2 VII obst

$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right] \qquad i = 1, 2, \dots, 7$$
$$\lambda_i = \beta_1 \cdot \exp\left[-\frac{d_i}{\beta_2}\right]$$

Repulsion strength decreases with distance, d_i

=> only close obstacles matter



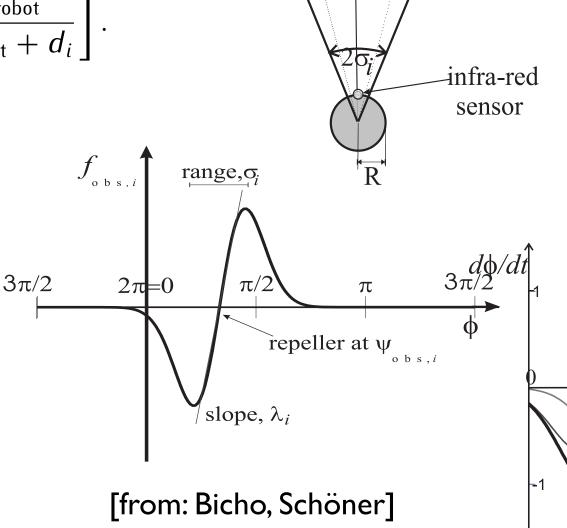
$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right]$$

$$\sigma_i = \arctan\left[\tan\left(\frac{\Delta\theta}{2}\right) + \frac{R_{\text{robot}}}{R_{\text{robot}} + d_i}\right].$$

Cangular range

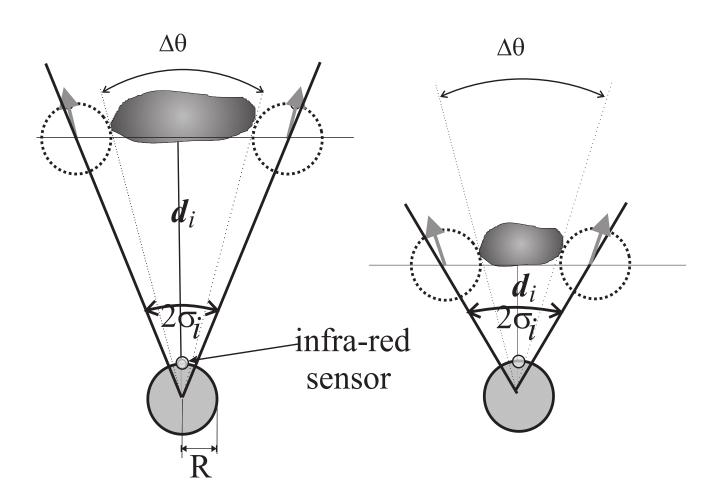
Properties on sensor

Cone Δθ and size over distance



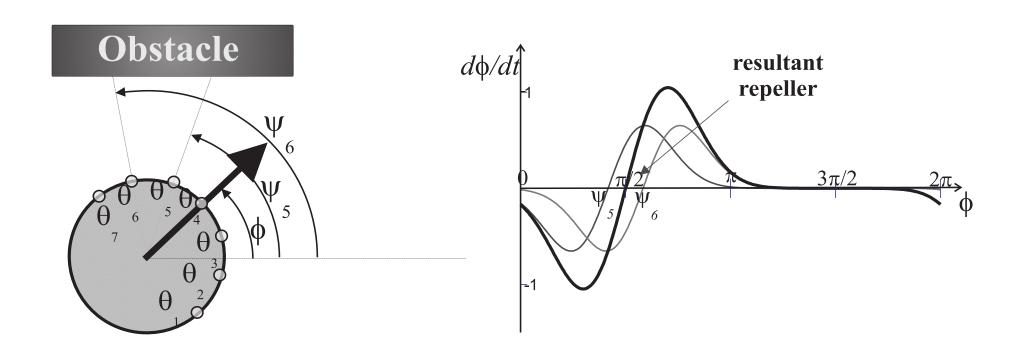
 $\Delta\theta$

=> as a result, range becomes wider as obstacle moves closer

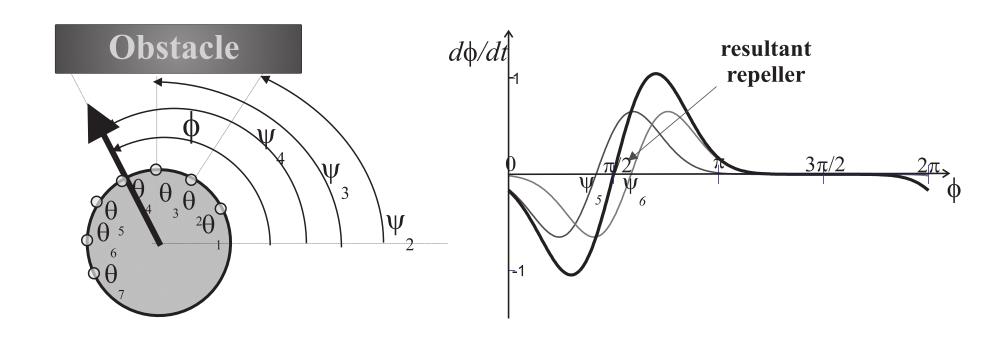


summing contributions from all sensors

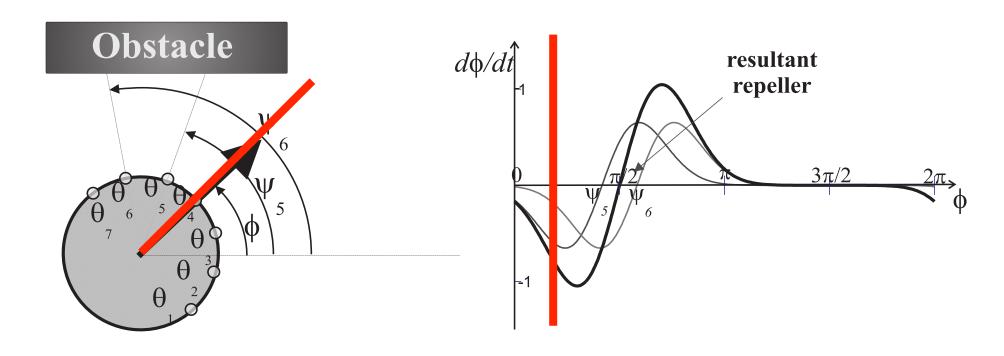
$$\frac{d\phi}{dt} = f_{\text{obs}}(\phi) = \sum_{i=1}^{7} f_{\text{obs},i}(\phi)$$



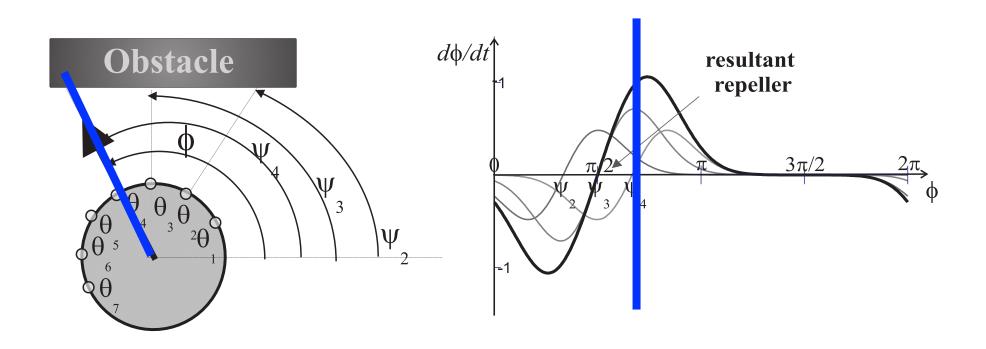
- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?

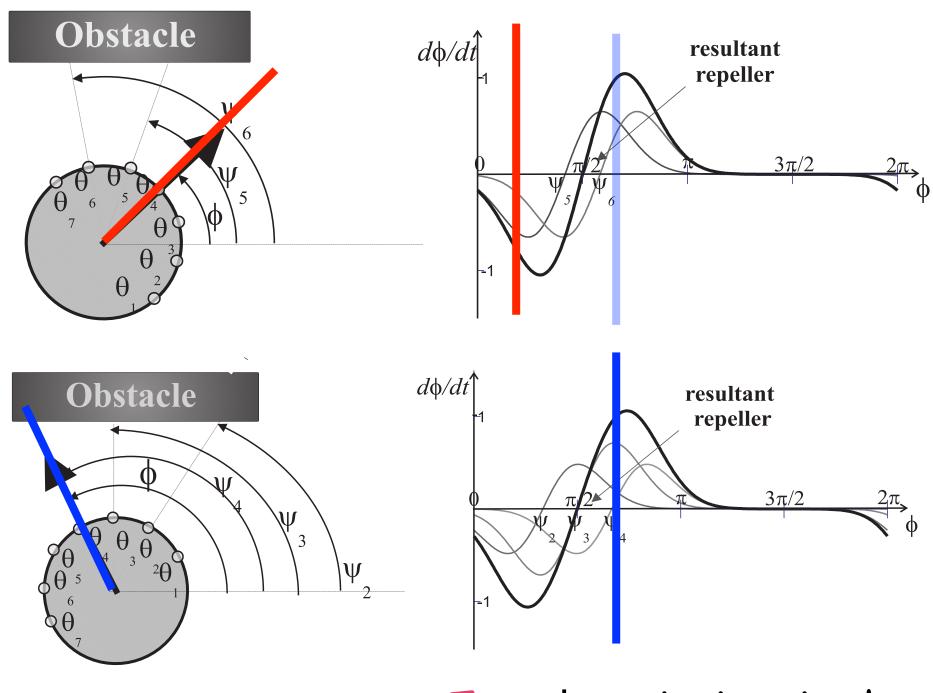


- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?



- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?

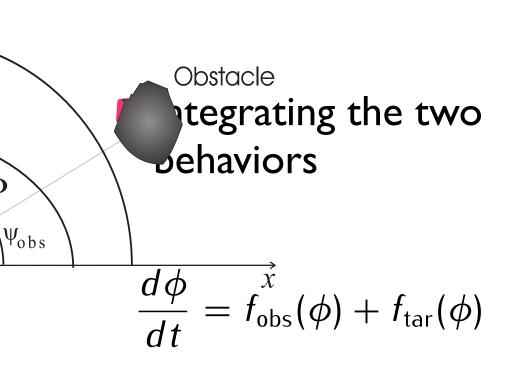


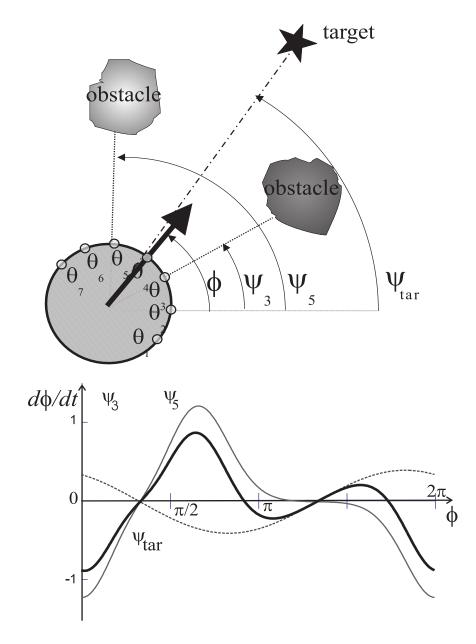


[from: Bicho, Schöner]

=> dynamics invariant!

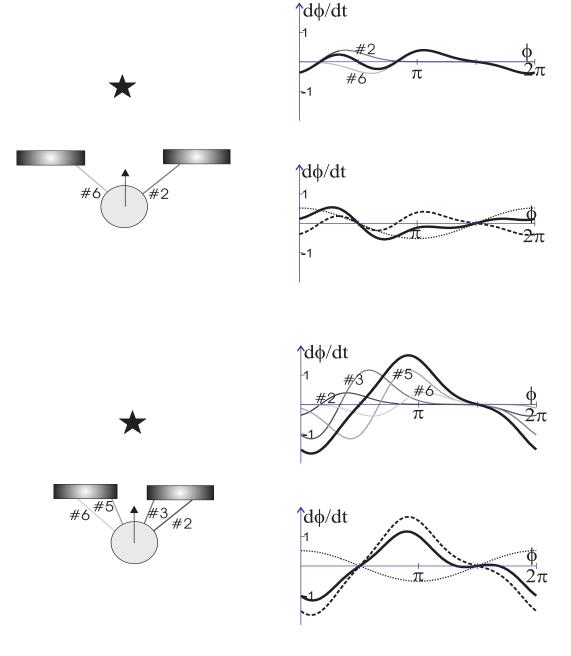
Behavioral Dynamics

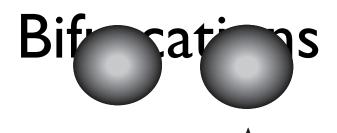




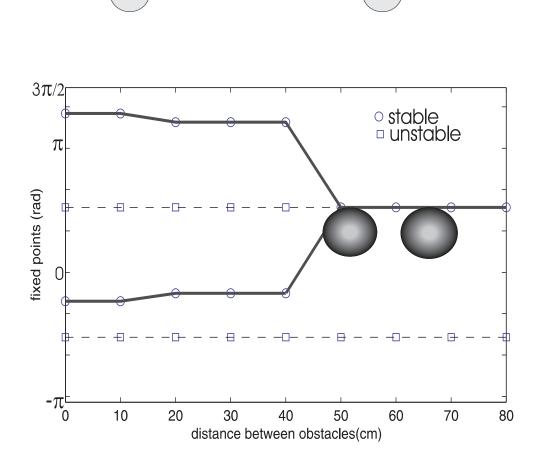
Bifurcations

bifurcation as a function of the size of the opening between obstacles

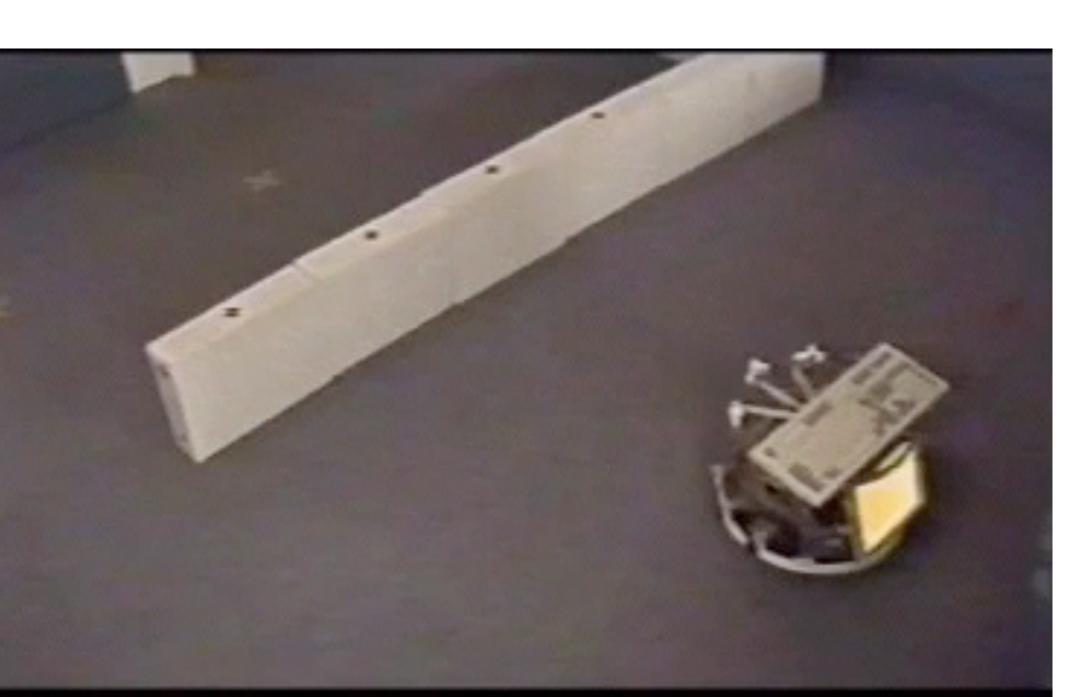




- bifurcation as a function of the size of the opening between obstacles
- =>tune distance dependence of repulsion so that bifurcation occurs at the right opening

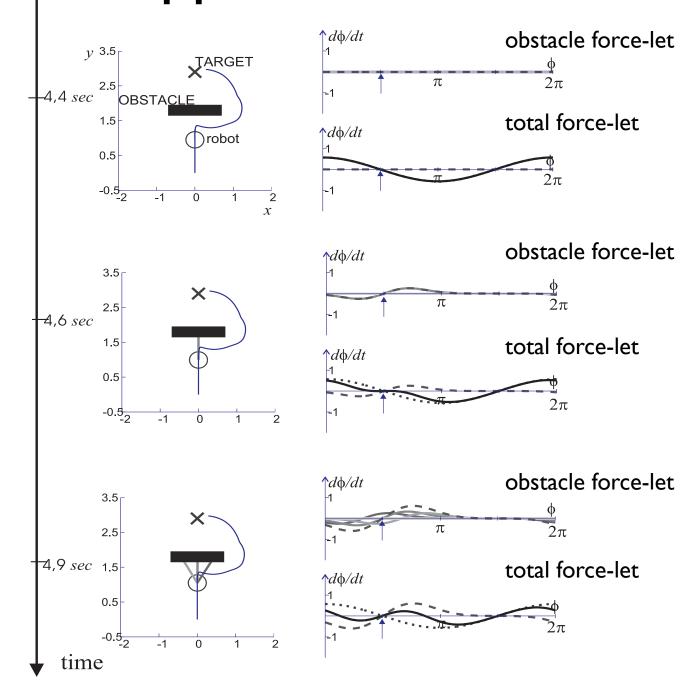


Bifurcations



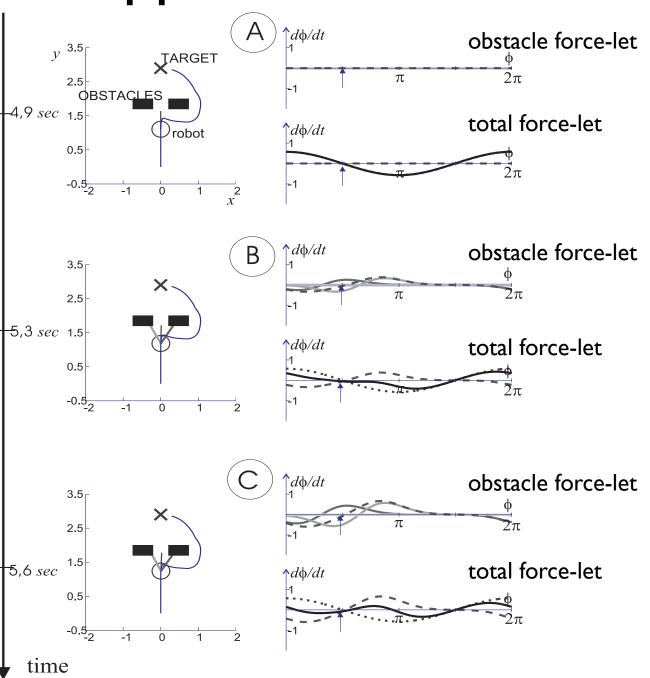
Bifurcation on approach to wall

- initially attractor dominates: weak repulsion
- bifurcation
- then obstacles dominate: strong repulsion and total repulsion



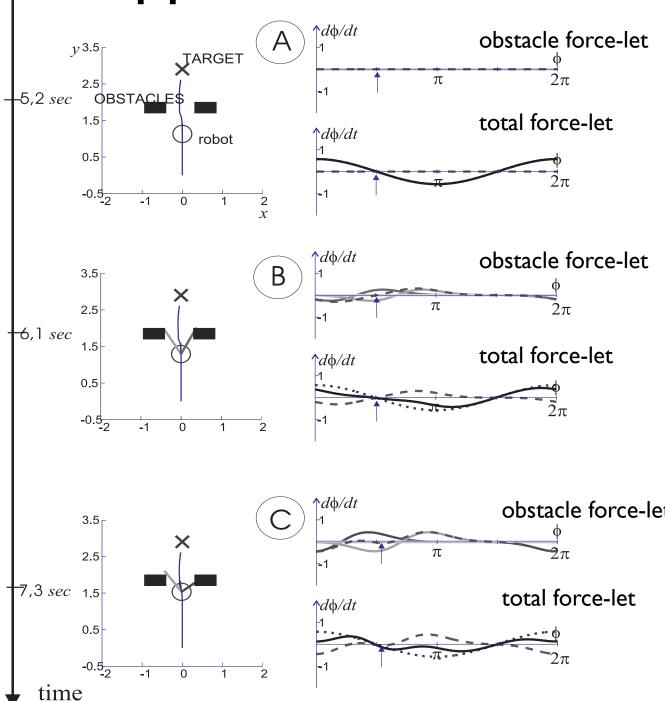
Bifurcation on approach to wall

same with small opening



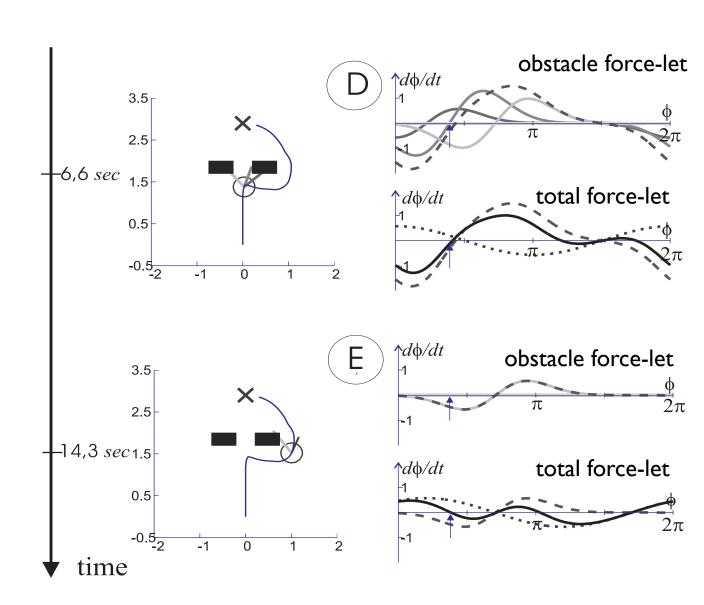
Bifurcation on approach to wall

at larger
 opening:
 repulsion
 weak all the
 way through:
 attractor
 remains stable



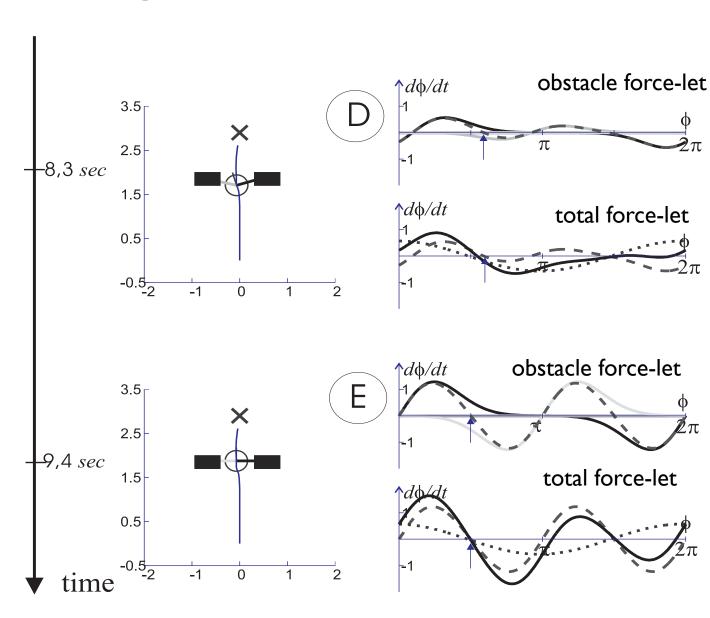
Tracking attractor

as robot
 moves around
 obstacles,
 tracks the
 moving
 attractor

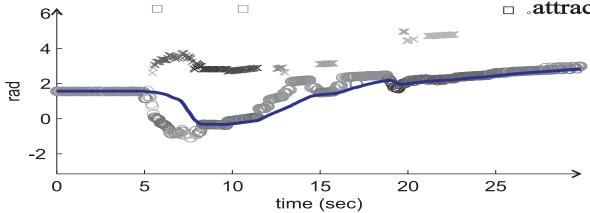


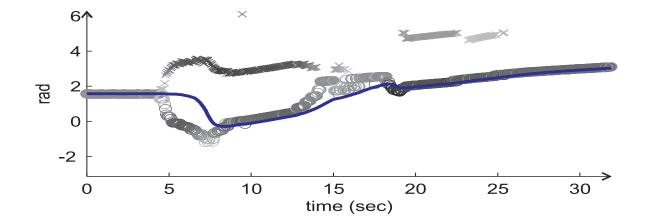
Tracking attractor

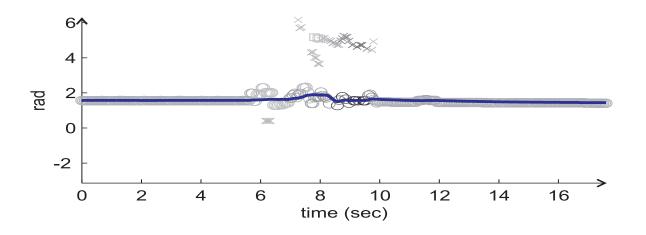
as robot
moves in
between
obstacles, the
dynamics
changes but
not the
attractor



Tracking attractors







Observation:

- even though the approach is purely local, it does achieve global tasks
- based on the structure of the environment!



Observation

different solutions may emerge depending on the environment...

Other implementations

autonomous wheel-chair by Pierre Mallet, Marseille

[Pierre Mallet, Marseille]

other implementations

Estela Bicho's cooperative robots... => exercises...

Conclusion

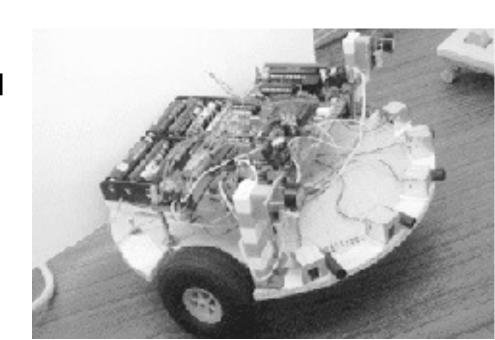
- attractor dynamics works on the basis lowlevel sensors information
- as long at the force-lets model the sensorcharacteristics well enough to create approximate invariance of the dynamics under transformations of the coordinate frames

Second order attractor dynamics

source: Bicho, Schöner, Robotics and Autonomous Systems 21:23-35 (1997)

Second order dynamics

- idea: go to even lower level sensory-motor systems:
 - a sensor that only knows there is a target or an obstacle on the left vs. on the right...
 - but is not able to estimate the heading of either
 - a motor system that is not calibrated well enough to steer into a given heading direction in the world



behavior variable

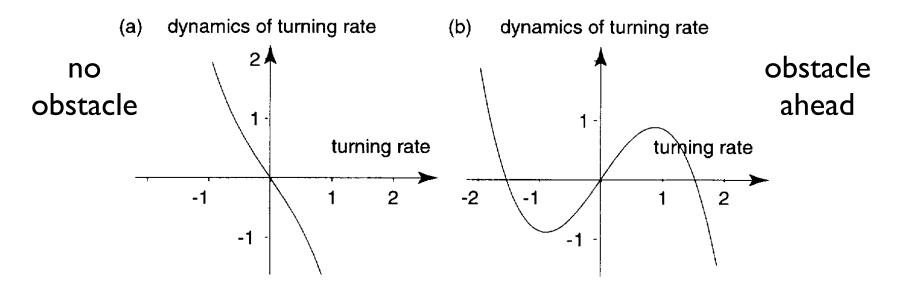
- turning rate omega rather than heading direction
- can be ``enacted'' by setting set-points for velocity servo controllers of each motor
- target: information about target being to the left, to the right, or ahead, but no calibrated bearing, psi, to target
- obstacle: turning rate
 - to the right when obstacle close and to the left
 - to the left when obstacle close and to the right
 - zero when obstacle far

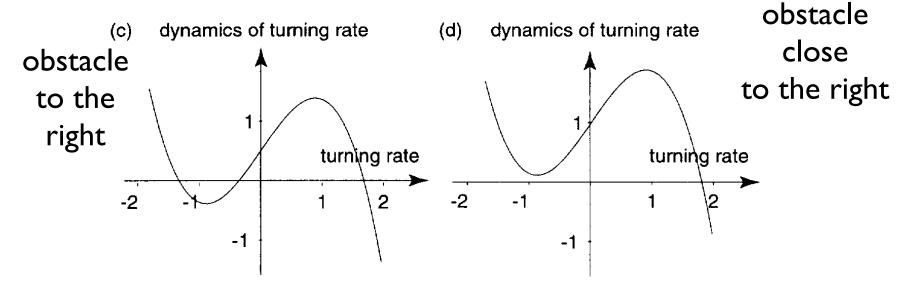
dynamics of turning rate: obstacle avoidance

- pitch-fork normal form (to get left-right symmetry)
- but symmetry potentially broken by additive constant: biases bifurcation toward left or toward right

$$\dot{\omega} = (\alpha + \frac{1}{2}\pi)c_{\text{obs}}F_{\text{obs}} + \alpha\omega - \gamma\omega^3$$

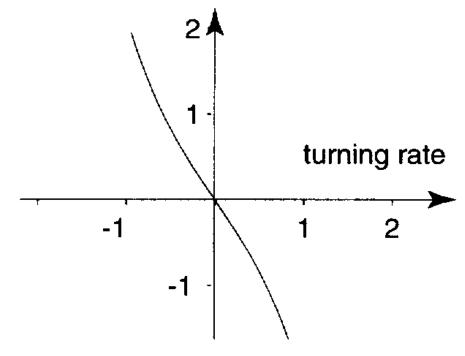
$$\dot{\omega} = (\alpha + \frac{1}{2}\pi)c_{\text{obs}}F_{\text{obs}} + \alpha\omega - \gamma\omega^3$$



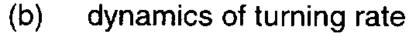


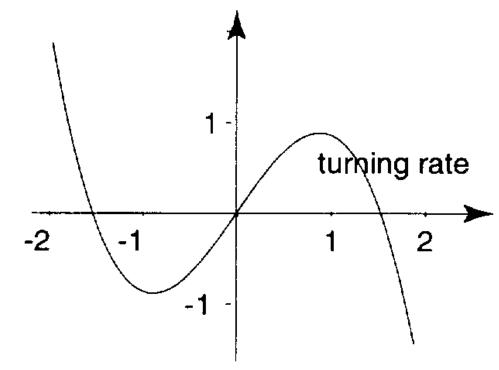
in absence of obstacle in forward direction (distance large): alpha negative, constant zero

(a) dynamics of turning rate

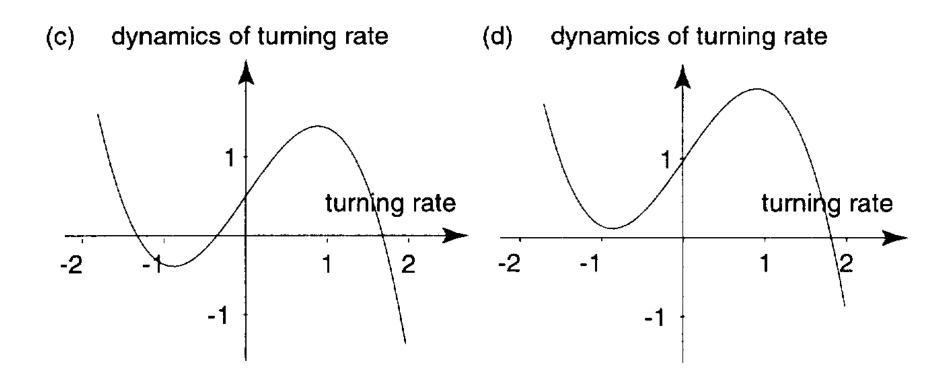


in presence of obstacle in forward direction, symmetric bifurcation to desired avoidance rotations: alpha positive, constant zero





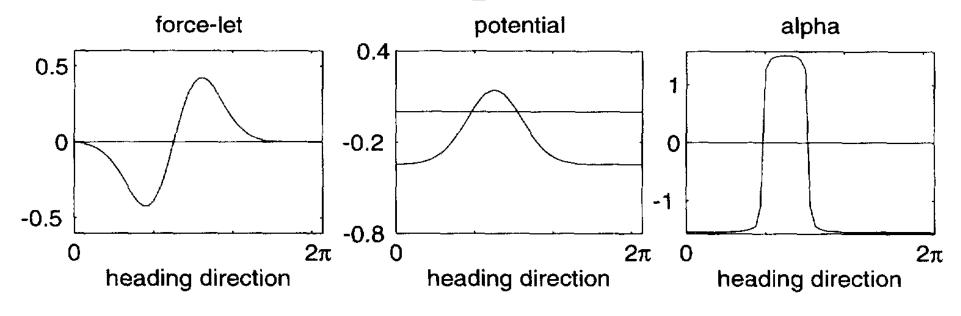
in presence of obstacle to the right of current heading: tangent bifurcation removes attractor at negative omega, alpha negative, constant negative



mathematical form

compute constant and alpha from obstacle force lets

$$\dot{\omega} = (\alpha + \frac{1}{2}\pi)c_{\text{obs}}F_{\text{obs}} + \alpha\omega - \gamma\omega^3$$



$$F_{\text{obs}} = \sum_{i} \lambda_{i} (\phi - \psi_{i}) \exp \left[-\frac{(\phi - \psi_{i})^{2}}{2\sigma_{i}^{2}} \right]$$

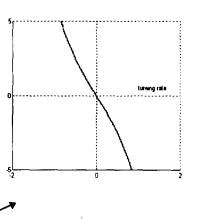
$$\lambda_{i} = \beta_{1} \exp[-d_{i}/\beta_{2}]$$

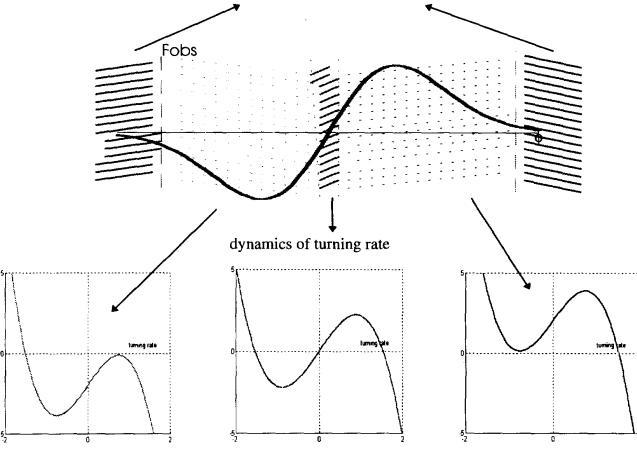
$$\sigma_{i} = \arctan \left[\tan \left(\frac{\Delta \theta}{2} \right) + \frac{R_{\text{robot}}}{R_{\text{robot}} + d_{i}} \right]$$

$$V = \sum_{i} \left(\lambda_{i} \sigma_{i}^{2} \exp \left[-\frac{\theta_{i}^{2}}{2\sigma_{i}^{2}} \right] - \frac{\lambda_{i} \sigma_{i}^{2}}{\sqrt{e}} \right)$$

$$\alpha = \arctan[c \ V]$$

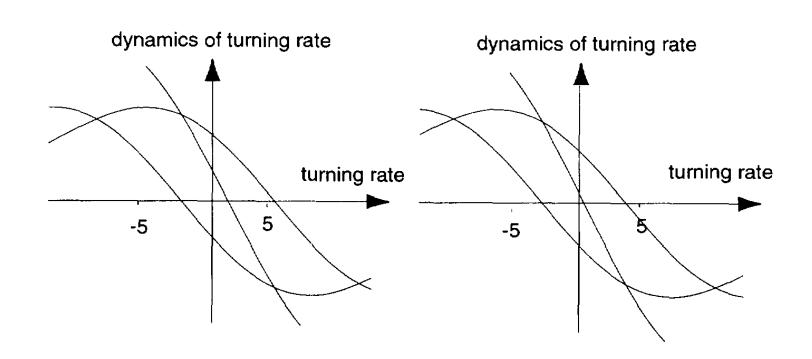
bifurcations as an obstacle is approached





dynamics: target acquisition

- a sensor for a target on the left sets an attractor at positive turning rate, strength graded with intensity
- a sensor for a target on the right sets an attractor at negative turning rate, strength graded with intensity



mathematical formulation

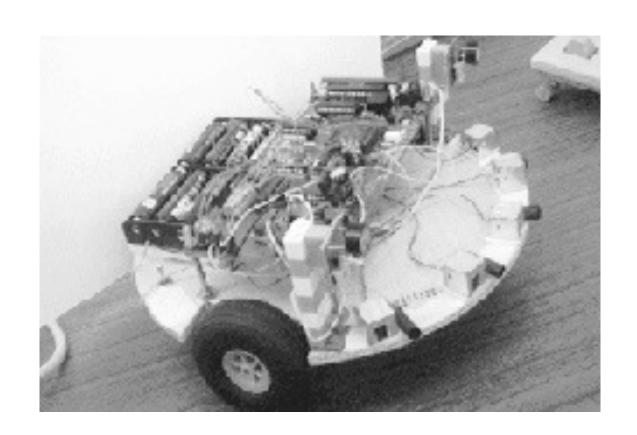
- force-let of each target sensor
- summed to total dynamics

$$g_i(\omega) = -\frac{1}{\tau_{\omega}}(\omega - \omega_i) \exp\left[-2\frac{(\omega - \omega_i)^2}{\Delta\omega^2}\right].$$
(*i* = right or left)

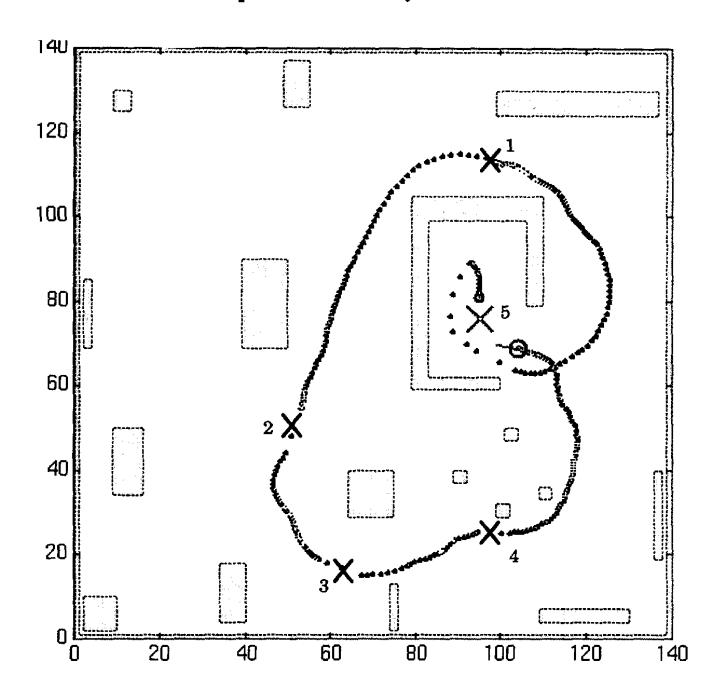
$$g_{\rm left}(\omega) + g_{\rm right}(\omega)$$

putting it to work on a simple platform

- Rodinsky!
- circular platform with passive caster wheel
- two (unservoed) motors
- 5 IR sensors
- 2 LDR's
- microcontrollerMC68HCA11A0Motorola (32 K RAM),8 bit



example trajectories



demonstration

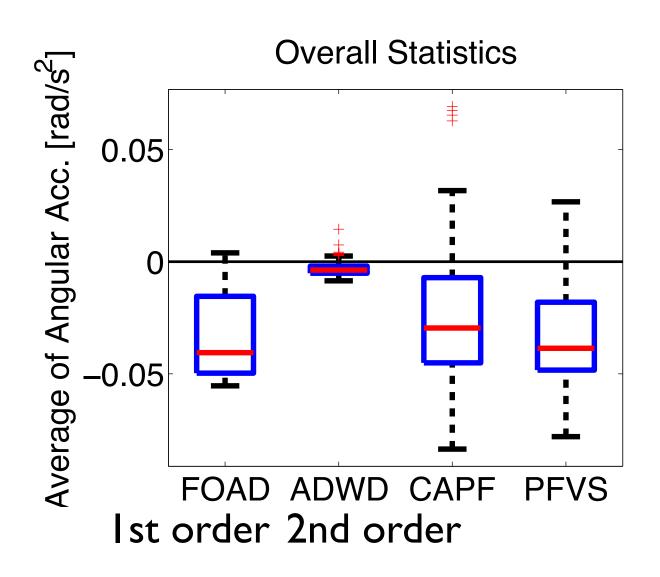
why does it work?

- here the dynamics exists instantaneously while vehicle is heading in a particular direction
- while the vehicle is turning under the influence of the corresponding attractor for turning rate, the dynamics is changing!
- typically undergoing an instability as vehicle's heading turns away from an obstacle...

what is the benefit of using second order dynamics?

- ability to integrate constraints which do not specify a particular heading direction, only turning direction
- ability to impose a desired turning rate => enhances agility in turning
- ability to control the second derivative of heading direction=angular acceleration: enables taking into account vehicle dynamics

quantitative comparison



[Hernandes, Becker, Jokeit, Schöner, 2014]

Summary

- behavioral variables
- attractor states for behavior
- attractive force-let: target acquisition
- repulsive force-let: obstacle avoidance
- bistability/bifurcations: decisions
- can be implemented with minimal requirements for perception