Attractor dynamics approach to behavior generation: vehicle motion Part 2: sub-symbolic approach

Gregor Schöner
Institute for Neural Computation, RUB

Behavioral dynamics

constraints: obstacle avoidance and target acquisition

Behavioral dynamics

\square so far, we had a "symbolic" approach to behavioral dynamics: the "obstacles" and "targets" were objects, that have identity, are preserved over time...and are represented by contributions
 to the behavioral dynamics

"symbolic" approach

requires high-level knowledge about objects in the world ("obstacles","targets", etc) and perceptual systems that extract parameters about these...
is that necessary?

Targets....

- are segmented... in the foreground
$\square=>$ neural fields to perform this segmentation from low-level sensory information: Dynamic Field Theory ...

Obstacles ...

■ obstacles need not be segmented ... does not matter if obstacles are one or multiple objects...
\square avoidance is about free space...

"sub-symbolic" approach

\square use low-level sensory information directly, $\Delta \psi$ without first detecting, segmenting, and estimating objects

Obstacle avoidance: sub-symbolic

\square each sensor mounted at fixed angle θ
\square that points in direction $\psi=\Phi+\theta$ in the world \square erect a repellor at that angle

[from: Bicho, Schöner]

Obstacle avoidance: sub-symbolic

$$
f_{\mathrm{obs}, i}(\phi)=\lambda_{i}\left(\phi-\psi_{i}\right) \exp \left[-\frac{\left(\phi-\psi_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right] \quad i=1,2, \ldots, 7
$$

\square Note: only $\Phi-\psi=-\theta$ shows up, which is constant!
$\square=>$ force-let does not depend on Φ !

[from: Bicho, Schöner]

Obstacle avoidance: sub-symbolic

$$
\begin{aligned}
f_{\text {obs }, i}(\phi) & =\lambda_{i}\left(\phi-\psi_{i}\right) \exp \left[-\frac{\left(\phi-\psi_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right] \quad i=1,2, \ldots, 7 \\
\lambda_{i} & =\beta_{1} \cdot \exp \left[-\frac{d_{i}}{\beta_{2}}\right]
\end{aligned}
$$

\square Repulsion strength decreases with distance, d_i
\square => only close obstacles matter

[from: Bicho, Schöner]

Obstacle avoidance: sub-symbolic

$$
\begin{aligned}
& f_{\mathrm{obs}, i}(\phi)=\lambda_{i}\left(\phi-\psi_{i}\right) \exp \left[-\frac{\left(\phi-\psi_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right] \\
& \sigma_{i}=\arctan \left[\tan \left(\frac{\Delta \theta}{2}\right)+\frac{R_{\mathrm{robot}}}{R_{\mathrm{robot}}+d_{i}}\right] . \\
& \text { angular range } \\
& \begin{array}{l}
\text { depends on sensor } \\
\text { cone } \Delta \theta \text { and size } \\
\text { over distance }
\end{array}
\end{aligned}
$$

[from: Bicho, Schöner]

Obstacle avoidance: sub-symbolic

=> as a result, range becomes wider as obstacle moves closer

[from: Bicho, Schöner]

Obstacle avoidance: sub-symbolic

\square summing contributions from all sensors

$$
\frac{d \phi}{d t}=f_{\mathrm{obs}}(\phi)=\sum_{i=1}^{7} f_{\mathrm{obs}, i}(\phi)
$$

[from: Bicho, Schöner]

Obstacle avoidance: sub-symbolic

but why does it work?
\square shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?

[from: Bicho, Schöner]

Obstacle avoidance: sub-symbolic

but why does it work?
\square shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?

[from: Bicho, Schöner]

Obstacle avoidance: sub-symbolic

but why does it work?
\square shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?

[from: Bicho, Schöner]

Behavioral Dynamics

\square integrating the two behaviors

$$
\frac{d \phi}{d t}=f_{\mathrm{obs}}(\phi)+f_{\mathrm{tar}}(\phi)
$$

[from: Bicho, Schöner]

Bifurcations

Bifurcations

bifurcation as a function of the size of the opening between obstacles
$\square=>$ tune distance dependence of repulsion so that bifurcation occurs at the right opening

[from: Bicho, Schöner]

Bifurcations

Bifurcation on approach to wall

Bifurcation on approach to wall

Bifurcation on approach to wall

Tracking attractor

as robot moves around obstacles, tracks the moving attractor

Tracking attractor

\square as robot moves in between obstacles, the dynamics changes but not the attractor

Tracking attractors

O .attractor 1
\times attractor 2

- .attractor 3

Observation:

\square even though the approach is purely local, it does achieve global tasks
\square based on the structure of the environment!

Observation

different solutions may emerge depending on the environment...

Other implementations

■ autonomous wheel-chair by Pierre Mallet, Marseille

[Pierre Mallet, Marseille]

other implementations

Estela Bicho's cooperative robots... => exercises...

Conclusion

\square attractor dynamics works on the basis lowlevel sensors information
\square as long at the force-lets model the sensorcharacteristics well enough to create approximate invariance of the dynamics under transformations of the coordinate frames

Second order attractor dynamics

source: Bicho, Schöner, Robotics and Autonomous Systems 21:23-35 (1997)

Second order dynamics

\square idea: go to even lower level sensory-motor systems:
\square a sensor that only knows there is a target or an obstacle on the left vs. on the right...
\square but is not able to estimate the heading of either
\square a motor system that is not calibrated well enough to steer into a given heading direction in the world

behavior variable

■ turning rate omega rather than heading direction
\square can be "enacted" by setting set-points for velocity servo controllers of each motor
\square target: information about target being to the left, to the right, or ahead, but no calibrated bearing, psi, to target
\square obstacle: turning rate
\square to the right when obstacle close and to the left
\square to the left when obstacle close and to the right
zero when obstacle far

dynamics of turning rate: obstacle avoidance

\square pitch-fork normal form (to get left-right symmetry)

■ but symmetry potentially broken by additive constant: biases bifurcation toward left or toward right
$\dot{\omega}=\left(\alpha+\frac{1}{2} \pi\right) c_{\mathrm{obs}} F_{\mathrm{obs}}+\alpha \omega-\gamma \omega^{3}$

obstacle avoidance

$$
\dot{\omega}=\left(\alpha+\frac{1}{2} \pi\right) c_{\mathrm{obs}} F_{\mathrm{obs}}+\alpha \omega-\gamma \omega^{3}
$$

obstacle avoidance

- in absence of obstacle in forward direction (distance large): alpha negative, constant zero
(a) dynamics of turning rate

obstacle avoidance

- in presence of obstacle in forward direction, symmetric bifurcation to desired avoidance rotations: alpha positive, constant zero
(b) dynamics of turning rate

obstacle avoidance

- in presence of obstacle to the right of current heading: tangent bifurcation removes attractor at negative omega, alpha negative, constant negative

(d) dynamics of turning rate

mathematical form

compute constant and alpha from obstacle force lets

$$
\dot{\omega}=\left(\alpha+\frac{1}{2} \pi\right) c_{\mathrm{obs}} F_{\mathrm{obs}}+\alpha \omega-\gamma \omega^{3}
$$

 alpha

$$
: F_{\mathrm{obs}}=\sum_{i} \lambda_{i}\left(\phi-\psi_{i}\right) \exp \left[-\frac{\left(\phi-\psi_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right]
$$

$$
\left.\lambda_{i}=\beta_{1} \operatorname{expl}-d_{i} / \beta_{2}\right]
$$

$$
\sigma_{i}=\arctan \left[\tan \left(\frac{\Delta \theta}{2}\right)+\frac{R_{\text {robot }}}{R_{\text {robot }}+d_{i}}\right]
$$

$V=\sum_{i}\left(\lambda_{i} \sigma_{i}^{2} \exp \left[-\frac{\theta_{i}^{2}}{2 \sigma_{i}^{2}}\right]-\frac{\lambda_{i} \sigma_{i}^{2}}{\sqrt{e}}\right)$

$$
\alpha=\arctan [c \quad V]
$$

$\alpha=\arctan [c \quad V]$

bifurcations as an obstacle is approached

dynamics: target acquisition

a sensor for a target on the left sets an attractor at positive turning rate, strength graded with intensity
\square a sensor for a target on the right sets an attractor at negative turning rate, strength graded with intensity

mathematical formulation

force-let of each target sensor
$g_{i}(\omega)=-\frac{1}{\tau_{\omega}}\left(\omega-\omega_{i}\right) \exp \left[-2 \frac{\left(\omega-\omega_{i}\right)^{2}}{\Delta \omega^{2}}\right]$.
($i=$ right or left)
\square summed to
$g_{\text {left }}(\omega)+g_{\text {right }}(\omega)$
total dynamics

putting it to work on a simple platform

Rodinsky!
circular platform with passive caster wheel
\square two (unservoed) motors
$\square 5$ IR sensors

- 2 LDR's
\square microcontroller

Motorola (32 K RAM), 8 bit

example trajectories

demonstration

why does it work?

\square here the dynamics exists instantaneously while vehicle is heading in a particular direction
\square while the vehicle is turning under the influence of the corresponding attractor for turning rate, the dynamics is changing!
typically undergoing an instability as vehicle's heading turns away from an obstacle...

what is the benefit of using second order dynamics?

\square ability to integrate constraints which do not specify a particular heading direction, only turning direction
\square ability to impose a desired turning rate => enhances agility in turning
\square ability to control the second derivative of heading direction=angular acceleration: enables taking into account vehicle dynamics

quantitative comparison

[Hernandes, Becker, Jokeit, Schöner, 2014]

Summary

- behavioral variables
\square attractor states for behavior
attractive force-let: target acquisition
\square repulsive force-let: obstacle avoidance
bistability/bifurcations: decisions
\square can be implemented with minimal requirements for perception

