Exercise 2 Attractor Dynamics for vehicle motion

1. Obstacle avoidance

In the lecture, we saw how to generate movement by generating a time course of vehicle heading, $\phi(t)$, from a dynamical system defined over ϕ. The contribution of a single obstacle to this dynamics is given by

$$
\dot{\phi}=\alpha(\phi-\psi) \exp \left[-\frac{(\phi-\psi)^{2}}{2 \sigma^{2}}\right]
$$

where ψ is the direction in which an obstacle lies, α is the strength of repulsion, and σ determines the width of this contribution. [For background, read through the first part of the paper Schöner, Dose, Engels (1995) made available on the web page (end on page 223 before "(3) Neural field dynamics".]

1. Plot the first factor and describe the geometrical meaning of the two parameters, ψ and α.
2. Plot the second factor and describe the geometrical meaning of the two parameters, ψ and σ.
3. Plot the product. Is the slope of the dynamics at $\phi=\psi$ affected by the second factor? Why or why not?
4. Plot the time course of heading direction that results from this dynamics when the initial heading direction, $\phi(0)$ is (a) $<\psi$, (b) $>\psi,(\mathrm{c})=\psi$. These plots are qualitative based on your mental "simulation" of the dynamics.
5. Plot the same time courses when α is larger.
6. State what happens when the initial heading, $\phi(0)$ is far from $\psi:|\phi(0)-\psi| \gg \sigma$?

2. Human movement

The model of Fajen, Warren, Temizer, Kaebling: "A Dynamical Model of VisuallyGuided Steering, Obstacle Avoidance, and Route Selection" (International Journal of Computer Vision 54:1334 (2003); available on the course webpage) is described by their Equation (4). Take only the attraction term into account:

$$
\ddot{\phi}=-b \dot{\phi}-k\left(\phi-\psi_{g}\right)
$$

where the various constants have been contracted into $k>0$ and $b>0$. You can further simplify this by introducing a shifted variable $\theta=\phi-\psi_{g}$.

1. Compute the fixed point. [Hint: Transform the second order equation into a first order equation by introducing an auxiliarly variable $\omega=\dot{\phi}$]
2. Write this linear dynamics as

$$
\binom{\dot{\theta}}{\dot{\omega}}=\mathbf{A}\binom{\theta}{\omega}
$$

where \mathbf{A} is a matrix. Compute the eigenvalues of that matrix. [Hint: If you don't know how to do this, there is an example in Scheinermann's book, e.g., on page 62 , after Eq. 2.10 there. There is also an appendix that states this in general on page 266, A.1.3., after Eq. A.2. Scheinerman's book can be obtained here: https://github.com/scheinerman/InvitationToDynamicalSystems]
3. Determine the stability of the fixed point by determining if the Eigenvalues have negative real parts.

