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Abstract. Using a biologically-inspired model, we show how successful route selection through a cluttered en-
vironment can emerge from on-line steering dynamics, without explicit path planning. The model is derived from
experiments on human walking performed in the Virtual Environment Navigation Lab (VENLab) at Brown. We
find that goals and obstacles behave as attractors and repellors of heading, the direction of locomotion, for an
observer moving at a constant speed. The influence of a goal on turning rate increases with its angle from the
heading and decreases exponentially with its distance; the influence of an obstacle decreases exponentially with
angle and distance. Linearly combining goal and obstacle terms allows us to simulate paths through arbitrarily
complex scenes, based on information about obstacles in view near the heading direction and a few meters ahead.
We simulated the model on a variety of scene configurations and observed generally efficient routes, and veri-
fied this behavior on a mobile robot. Discussion focuses on comparisons between dynamical models and other
approaches, including potential field models and explicit path planning. Effective route selection can thus be
performed on-line, in simple environments as a consequence of elementary behaviors for steering and obstacle
avoidance.

Keywords: visual control of locomotion, optic flow, obstacle avoidance, path planning, robot navigation

Humans and other animals have a remarkable abil-
ity to coordinate their actions with complex, chang-
ing environments. This ability is particularly evident
in fundamental behaviors such as prehension and lo-
comotion. With little conscious effort, we routinely
reach or walk through cluttered scenes, avoiding ob-
stacles, reaching goals, and intercepting moving targets
safely and effectively. The problem of adapting behav-
ior to complex environments has proven a challenge in
robotics. Recent trends in behavior-based robotics have

taken inspiration from biological solutions to such con-
trol problems, particularly those of arthropods, regard-
ing both the architecture of action systems (Brooks,
1986; Pfeiffer et al., 1994; Ritzmann et al., 2000) and
principles of sensory control (Duchon et al., 1998;
Franceschini et al., 1992; Srinivasan and Venkatesh,
1997). In the present paper, we apply a dynamic model
of visually-guided locomotion in humans to the prob-
lems of steering, obstacle avoidance, and route selec-
tion in mobile robots.
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A common approach to robot control is to divide the
task into modules that perform peripheral and central
subtasks, characterized by Brooks (1991) and Moravec
(1981) as “sense, model, plan, act.” Under this type of
model-based control, sensory information is used to
compute a fairly comprehensive internal model of the
3D layout and motions of objects and surfaces in the
scene. On the basis of the model, an action path through
the scene is then explicitly planned, prior to its ex-
ecution in the physical environment. The path plan-
ning process may compute an optimal route on the
basis of some variational principle, such as shortest
path, least energy, or minimum jerk. An alternative
approach, originating with Gibson (1958/1998, 1979),
Lee (1980), and Warren (1988), has sought to achieve
on-line control on the basis of occurrent sensory infor-
mation, without an explicit world model or path plan-
ning process (Aloimonos, 1993; Brooks, 1991; Duchon
et al., 1998). Under this sort of information-based con-
trol, adaptive behavior is governed by mappings be-
tween informational variables and action variables, re-
ferred to as laws of control. One aim of this approach
is to determine how apparently planned behaviors such
as route selection might emerge as a consequence of
the way information is used to modulate action, blur-
ring the line between purely reactive and planned be-
havior. It remains to be seen how far such an ap-
proach can be extended to more complex navigation
problems.

A further step in this development has been the in-
troduction of dynamical principles to achieve both sta-
bility and flexibility in behavior (Beer, 1995; Schöner
and Dose, 1992; Schöner et al., 1995; Warren, 1998b),
building upon research in human motor coordination
(Kelso, 1995; Kugler and Turvey, 1987). In our version
of such an approach, the agent and its environment can
be described as a pair of dynamical systems, which are
coupled mechanically and informationally. Change in
the state of the environment is a function of its cur-
rent state and forces exerted by the agent, according
to the laws of physics; reciprocally, change in the state
of the agent (action) is a function of its current state
and information about the environment, according to
laws of control. Behavior arises from interactions be-
tween the components of this mutually coupled system
and reflects the constraints of both components. Such
systems can be formally described in terms of a set
of differential equations, with observed behavior cor-
responding to solutions to the equations for a given
set of initial conditions. Stable modes of behavior and

flexible transitions between them are expressed in the
low-dimensional dynamics of the system, which we
term the behavioral dynamics.1

More specifically, the emergent behavior can be
characterized in terms of behavioral variables that are
selected on the basis of their relevance to the task goals
(Schöner et al., 1995). The current state of the system,
as well as intended and avoided states, are thus express-
ible as (sets of) points in the space of behavioral vari-
ables, and behavior corresponds to trajectories through
this space. Expressing the behavior in terms of a system
of differential equations allows us to exploit the tools
and concepts of dynamical systems theory (Strogatz,
1994). In the language of dynamical systems, points
toward which trajectories converge are called attrac-
tors and points away from which trajectories diverge
are called repellors. Sudden changes in the number or
type of such fixed points as a consequence of continu-
ous changes in system parameters can be described as
bifurcations. Thus, attractors and repellors in the space
of behavioral variables may correspond to goal states
and avoided states, and bifurcations to qualitative tran-
sitions between behavioral modes, providing flexibility
in behavior.

We thus distinguish two levels of analysis: the
agent-environment interaction (information and con-
trol laws), and the emergent behavior (behavioral dy-
namics). Given that behavior is a complex product of
the mutually coupled system, it cannot be simply dic-
tated by the agent. The challenge for the agent or engi-
neer thus becomes one of identifying control laws that
evoke the desired behavior in the system as a whole,
such that available information is used to shape the
appropriate behavioral dynamics.

In this paper we investigate visually-guided loco-
motion in such a dynamical framework, inspired by
the work of Schöner et al. (1995). Our approach will
be to identify a set of behavioral variables for steering
and obstacle avoidance, measure human behavior when
walking to a goal and around an obstacle, and develop
a model of the behavioral dynamics. Our ultimate aim
is to determine whether successful route selection, in
which an agent must detour around one or more ob-
stacles to reach a goal, can be accounted for by the
on-line steering dynamics, without an explicit world
model or path planning. We then apply the model to
the problem of robotic control in simulation and on a
mobile robot, and show that it compares favorably with
the potential field method of path planning. The model
is relevant to route selection through relatively simple
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scenes in which the locations of goals and obstacles
are currently accessible. Navigation in complex envi-
ronments (e.g. mazes) is likely to require more sophisti-
cated strategies based on more global knowledge of the
environment.

A Dynamical Framework for Steering
and Obstacle Avoidance

Consider an agent moving through a simple environ-
ment with a constant speed s and a direction of loco-
motion φ, which we will refer to as the heading, de-
fined with respect to a fixed allocentric reference axis
(Fig. 1). From the agent’s current position, a goal lies
in the direction ψg at a distance dg , and an obstacle lies
in the direction ψo at a distance do. To steer toward the
goal, the agent must turn its heading in the direction of
the goal, such that φ = ψg and φ̇ = 0. At the same time,
the agent must turn away from the obstacle, such that
φ �= ψo when φ̇ = 0. Thus, the intended state of steering
toward the goal can be expressed by particular values
of φ and φ̇, and the avoided state of steering toward the
obstacle can be expressed by different values of φ and
φ̇. Because φ and φ̇ provide a set of variables that can

Figure 1. Plan view of an observer moving through an environ-
ment containing a goal and an obstacle. The dotted line is a fixed,
exocentric reference line used to define the observer’s direction of
locomotion (φ), the direction of the goal (ψg) and the direction of
the obstacle (ψo). dg and do correspond to the distance from the
observer to the goal and obstacle, respectively.

be used to express the current state of the system, as
well as intended and avoided states, we adopt φ and φ̇

as behavioral variables.
We next develop a model in the form of a system of

differential equations that describes how the behavioral
variables change over time, analogous to a mass-spring
system. Broadly speaking, the model consists of three
components: a goal component, an obstacle compo-
nent, and a damping term. The damping term opposes
turning, and we assume it is a monotonically increasing
function of φ̇ and is independent of φ. The goal compo-
nent determines how the egocentric location of a goal
contributes to angular acceleration (φ̈), and is assumed
to be a function of the current goal angle (φ − ψg) and
goal distance (dg). Finally, the obstacle component de-
termines the contribution of each obstacle in the scene
and is assumed to be a function of the obstacle angle
(φ − ψo) and possibly obstacle distance (do). Taken to-
gether, the general form of the model is:

φ̈ = − fd (φ̇) − fg(φ − ψg, dg)

+
#obstacles∑

i=1

fo
(
φ − ψoi , doi

)
(1)

where fd is the damping function, fg is the goal
function, fo is obstacle function, and the subscript i is
the index of each obstacle in the scene. Although the
motion of the agent to a new (x, z) position in the en-
vironment will alter ψg , dg,ψo, and do, these variables
can be rewritten as functions of x and z (see Appendix).
The agent-environment system is thus completely de-
scribed by a four-dimensional system of equations, for
to predict the agent’s future position we need to know
its current position (x, z), heading (φ), and turning rate
(φ̇), assuming that speed is constant. (See Appendix
for the complete set of equations.) Note, however, that
at this stage the agent and objects are simply treated as
points.

The precise manner in which the agent turns toward
goals and away from obstacles is determined by the
form of each function, and reflected in the shape of the
trajectory through the space of behavioral variables. To
select the form of each function, we turned to empirical
observations of human walking. We designed a series
of experiments intended to measure how the angles and
distances to goals and obstacles influence the turning
rate. These observations were then used to specify the
form of goal and obstacle functions and estimate pa-
rameter values in the dynamical model.
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Human Experiments

Three experiments were designed to reveal the fac-
tors that influence how humans turn toward goals and
away from obstacles during walking (see Fajen and
Warren, 2003), for details). The studies were con-
ducted in the Virtual Environment Navigation Lab
(VENLab) at Brown University. The VENLab consists
of a 12 m × 12 m room in which subjects are able to
walk around freely while wearing a head-mounted dis-
play (HMD). A hybrid inertial and ultrasonic tracker
mounted in the ceiling tracks the position and orien-
tation of the HMD. This information is fed back to a
high-performance graphics workstation, which updates
the visual display presented in the HMD. This facility
allows us to manipulate both the structure of the en-
vironment and the visual information presented to the
observer in real-time, while simultaneously recording
ongoing behavior in naturalistic tasks.

The first experiment examined the simple case of
walking toward a goal, while the second examined
avoiding a single obstacle en route to a goal. In
Experiment 1, observers began each trial by walking
in a specified direction. After walking 1 m, a goal
appeared at an angle of φ − ψg = 5◦, 10◦, 15◦, 20◦,
or 25◦ from the heading direction and a distance of
dg = 2, 4, or 8 m. Observers were simply asked to
walk to the goal. The major findings of Experiment 1
were that the turning rate and angular acceleration to-
ward goals increased with goal angle (see Fig. 2(a))
but decreased with goal distance (see Fig. 2(b)). In
Experiment 2, observers began walking toward a goal
located straight ahead at a distance of 10 m. After
walking 1 m, the obstacle appeared at an angle of
φ − ψo = 1◦, 2◦, 4◦, or 8◦ from the heading direction
and a distance of do = 3, 4, or 5 m. The major findings
of Experiment 2 were that the turning rate and angular
acceleration away from obstacles decreased with both
obstacle angle (see Fig. 3(a)) and obstacle distance (see
Fig. 3(b)).

The Model

These empirical observations were used to specify
the dynamical model of steering and obstacle avoid-
ance. First, for purposes of simplicity, we assumed that
damping would be proportional to turning rate, such
that fd (φ̇) = bφ̇, for some constant b > 0. The goal
function fg(φ − ψg , dg) was chosen to reflect the find-
ings that the influence of the goal on angular accelera-

(a)

(b)

Figure 2. Human trajectories for turning toward a goal in
Experiment 1 (turning rate (φ̇) vs. goal angle (φ − ψg)). Curves
correspond to (a) different initial goal angles in the 4 m condition
and (b) different initial goal distances in the 20◦ condition.

tion increases with goal angle and decreases with goal
distance:

fg(φ − ψg, dg) = kg(φ − ψg)(e−c1dg + c2) (2)

Thus, in the model the goal’s influence increases lin-
early with goal angle up to 180◦ (see Fig. 4(a)) and de-
creases exponentially with goal distance (see Fig. 4(b)).
Note that this influence asymptotes to some minimum
non-zero value as goal distance increases, enabling the
agent to steer toward distant goals. The “stiffness” pa-
rameter kg is a gain term for the goal component, c1 sets
the rate of exponential decay with goal distance, and c2

scales the minimum acceleration toward distant goals.
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(a)

(b)

Figure 3. Human trajectories for turning away from an obstacle
in Experiment 2 (turning rate (φ̇) vs. goal angle (φ − ψg)). Curves
correspond to (a) different initial obstacle angles in the 4 m condition
and (b) different initial obstacle distances in the 4◦ condition.

Likewise, the obstacle function fo(φ − ψo, do) was
chosen to reflect the findings that the influence of the
obstacle on angular acceleration decreases with both
obstacle angle and distance:

fo(φ − ψo, do) = ko(φ − ψo)
(
e−c3|φ−ψo|)(e−c4do ) (3)

In this case, the obstacle’s influence decreases expo-
nentially with obstacle angle (see Fig. 4(c)) as well as
with obstacle distance (see Fig. 4(d)). The parameter
ko is a gain term for the obstacle component, c3 sets the
rate of decay with obstacle angle, and c4 sets the rate
of decay with obstacle distance. Note that for small
obstacle angles, acceleration away from the obstacle

increases with obstacle angle, such that the function is
continuous and there is a repellor at an obstacle angle
of zero. Unlike the goal component, the obstacle influ-
ence decreases to zero as distance goes to infinity. When
parameterized to fit the human data, these two exponen-
tials imply that only obstacles within ±30◦ of the head-
ing direction and less than 4 m ahead exert an appre-
ciable influence on steering behavior. Note that the ex-
ponential terms introduce nonlinearity into the system.

Thus, the full model is:

φ̈ = −bφ̇ − kg(φ − ψg)(e−c1dg + c2)

+ ko(φ − ψo)
(
e−c3|φ−ψo|)(e−c4do ) (4)

In principle, additional obstacles in the environment
can be included by simply adding terms to the equa-
tion. The model thus scales linearly with the complex-
ity of the scene, and doesn’t blow up in complicated
environments (Large et al., 1999). Furthermore, only
obstacles near the heading direction and a few meters
ahead need to be evaluated, making the model compu-
tationally quite tractable. The agent therefore does not
need a memory representation of the entire scene; as
long as the goal location is available to the agent’s sen-
sors, route selection is performed simply on the basis
of the obstacles within a small spatial window ahead.

Simulations

We simulated the model under a variety of conditions
to test its success in steering toward goals, avoiding
obstacles and selecting routes. The conditions used for
the first two sets of simulations were identical to those
used in the two preceding human experiments, and their
purpose was to test the adequacy of Eq. (4) as a model
of human behavior. The next step was to test the model
in more complex scenes containing one or more ob-
stacles in which multiple routes around the obstacle(s)
are possible. These simulations were intended to reveal
how goal and obstacle components interact to perform
route selection.

Simulation #1: Steering Toward a Goal

We simulated the model under the same conditions used
in Experiment 1 on steering toward a goal, to identify
the single set of parameters for the goal component
that best fit the data. Simulations were compared with
the mean time series of goal angle in the human data
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Figure 4. Plots of (a) goal angle term, (b) goal distance term, (c) obstacle angle term, and (d) obstacle distance term from Eq. (4).

using a least-squares analysis, as the four parameters
were systematically varied. The best fit (r2 = 0.982)
was found with parameter values of b = 3.25, kg =
7.50, c1 = 0.40, and c2 = 0.40. Using these settings,
the model produced paths to the goal that were virtu-
ally identical with human subjects (Fig. 5), turning at
a rate that depended on goal angle and distance in a
similar manner. Specifically, turning rate and angular
acceleration increased with goal angle (Fig. 6(a)) and
decreased with goal distance (Fig. 6(b)).

Simulation #2: Avoiding an Obstacle

Adding a single obstacle component, we simulated the
model under the conditions used in Experiment 2. We
used the parameter settings found in the previous sim-
ulation for the goal component, and fit the three pa-
rameters for the obstacle component in the same man-
ner as before. The best fitting obstacle values (mean
r2 = 0.975) were ko = 198.0, c3 = 6.5, and c4 = 0.8.
Using these settings, the model successfully detoured
around the obstacle to the goal on paths very similar to
those of human subjects (Fig. 7). The turning rate and
acceleration away from the obstacle decreased with ob-
stacle angle (see Fig. 8(a)) and decreased with obstacle
distance (see Fig. 8(b)), reproducing the characteris-
tics of human obstacle avoidance behavior. Thus, the

model exhibits both a good quantitative and qualitative
fit to the human behavior observed in Experiments 1
and 2.

Simulation #3: Route Selection

To see whether the model could predict the routes hu-
mans would select through somewhat more complex
scenes, we performed simulations with a variety of
other goal and obstacle configurations. Because the
model functions in real-time, behavior is determined
entirely by the interaction of goal and obstacle compo-
nents, whose influence changes with the position, head-
ing and turning rate of the agent. How might goal and
obstacle components interact to determine the route?

Simulation #3a: Relative Position of Goal and One
Obstacle. Consider the situation in which the direc-
tion of the obstacle lies in between the direction of
heading and the direction of the goal (see Fig. 9). In
this case, the agent could take either an outside (left)
path or an inside (right) path around an obstacle. If
the agent’s behavior is determined by the interaction
of goal and obstacle components, and if the relative
“attraction” of the goal and “repulsion” of the obstacle
depend on their locations, then the offset angle between
the obstacle and goal and the goal distance should in-
fluence the agent’s route.
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(a)

(b)

Figure 5. Paths produced by model to goals located at (a) 5◦, 10◦,
15◦, 20◦, and 25◦ and 4 m and (b) 2, 4, and 8 m in the 20◦ condition
in Simulation #1.

We tested the model using configurations of goals
and obstacles similar to those in Fig. 9. Keeping the
initial goal angle constant at 15◦ and the initial obsta-
cle distance constant at 4 m, we varied the initial goal
distance between 5 m and 9 m, and the initial offset an-
gle between 1◦ and 15◦. We found effects of both initial
goal distance and initial offset angle. Using the fixed
parameters determined in Simulations #1 and #2, the
agent selects an outside route for offset angles ≤7◦, and
an inside path for angles ≥10◦. For angles between 7◦

and 10◦, the agent takes an outside route for larger goal
distances and switches to an inside route for smaller
goal distances (Fig. 10).

(a)

(b)

Figure 6. Model trajectories in Simulation #1 (turning rate (φ̇) vs.
goal angle (φ − ψg)). Curves correspond to (a) initial goal angle in
the 4 m condition and (b) initial goal distance in the 20◦ condition.

The effect of initial goal distance is a consequence
of the fact that the attractive strength of the goal, and
hence angular acceleration toward the goal, increases
as the goal gets nearer. The effect of offset angle is
a consequence of the trade-off between the attractive
strength of the goal, which increases with angle, and the
repulsive strength of the obstacle, which decreases with
angle. Initially, the goal component dominates, turning
the agent in the direction of the goal. The resulting de-
crease in both goal and obstacle angle decreases the
attractive strength of the goal and increases the repul-
sive strength of the obstacle. Whether the agent follows
an inside or outside route depends on which component
dominates as the agent heads toward the obstacle. For
large offset angles, the goal angle is relatively large
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Figure 7. Paths produced by model around obstacles located at 4◦
and 3, 4 or 5 m in Simulation #2.

(a)

(b)

Figure 8. Model trajectories in Simulation #2 (turning rate (φ̇) vs.
goal angle (φ−ψg)). Curves correspond to (a) initial obstacle angle in
the 4 m condition and (b) initial obstacle distance in the 4◦ condition.

Figure 9. Configuration of goal and obstacle used in Simulation
#3a.

as the agent turns toward the obstacle. Hence, goal at-
traction overcomes obstacle repulsion resulting in an
inside route. For small offset angles, the goal angle is
relatively small as the agent turns toward the obstacle.
Hence, obstacle repulsion overcomes goal attraction,
forcing the agent along an outside route. Thus, the deep
structure of the observed route selection is represented
in the behavioral dynamics.

To evaluate the model’s predictive ability, we tested
for these effects of initial offset angle and initial goal
distance in humans. As in Experiments 1 and 2, subjects
began walking in a specified direction. After walking

Figure 10. Paths produced by the model to goals located at 15◦ and
5, 7, or 9 m. Goal-obstacle offset angle is 8◦ and obstacle distance is
4 m.
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1 m, a goal and obstacle appeared simultaneously. Ini-
tial goal angle was fixed at 15◦ and initial obstacle
distance at 4 m. We varied initial goal distance be-
tween 5, 7, and 9 m and initial offset angle between
1◦, 2◦, 4◦, and 8◦ (Fig. 9). Means paths for each con-
dition of initial offset angle are shown in Fig. 11(a).
Although observers took both inside and outside paths
in each condition, the percentage of inside paths de-
creased with initial goal distance and increased with
offset angle (see Fig. 11(b)). Both effects are consis-
tent with the predictions of the model. The distribution
of paths could presumably be reproduced by adding a
noise term to the model.

Interestingly, the shift to inside paths occurred at
somewhat larger offset angles for the model (7–10◦)

(a)

(b)

Figure 11. (a) Mean paths and (b) percentage of inside paths pro-
duced by humans under conditions used in Simulation #3a.

than for human participants (2–4◦). Thus, the param-
eter settings derived from Experiments 1 and 2 yield
behavior that is somewhat biased toward outside paths.
One reason for this may be that the first two experiments
sampled a limited range of conditions, and in particu-
lar did not include cases in which participants crossed
in front of the obstacle to reach the goal. It is possible
that they adapted their behavior (adjusted their “param-
eters”) to these special conditions, with the result that
the parameter fits did not generalize precisely to a wider
range of conditions. We thus performed a second set of
simulations to determine whether we could reproduce
the pattern of routes observed in Experiment 3 with a
minimal change in parameters. Adjusting a single pa-
rameter, c4, from 0.8 to 1.6, was sufficient to induce the
shift from an outside to an inside path at offset angles
between 1◦ and 4◦. The c4 parameter determines the
decay rate of obstacle repulsion as a function of dis-
tance, and increasing it results in somewhat “riskier”
behavior. Thus, the model successfully predicted the
qualitative effects of initial goal distance and initial
offset angle on route selection, and with a minor ad-
justment to one parameter reproduced the quantitative
properties of the human data.

Simulation #3b: Relative Position of Two Obstacles.
Whereas Simulation #3a was intended to reveal how
goal and obstacle components interact, Simulation #3b
focused on the interaction of two obstacle components.
Specifically, we wanted to determine how the location
of a distant obstacle affects the agent’s route around a
nearby obstacle. In this set of simulations, the initial
angle (0◦) and distance (9 m) of the goal was fixed, as
was the initial angle (0.5◦) and distance (4 m) of the
nearby obstacle. We manipulated the initial angle of the
distant obstacle while keeping its initial distance fixed
at 4.5 m (Fig. 12(a)). When the angle of the distant
obstacle was close to zero (−0.5◦), the agent detoured
to the left of both obstacles (Fig. 12(b)). As that angle
grew slightly (−5◦), the agent detoured to the right of
both obstacles (Fig. 12(c)). Finally, as the angle opened
further (−15◦), the agent switched to a route between
the two obstacles (Fig. 12(d)).

The agent appears to be making intelligent route se-
lection decisions, choosing the route that is most effi-
cient for the given configuration of obstacles. It is easy
to see, however, how these “choices” emerge from the
interaction of the two obstacle components. Because
the two obstacles are initially on opposite sides of the
agent’s heading, they oppose one another. When the
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Figure 12. (a) Configuration of goal and obstacles used in Simulation #3b, and (b)–(d) paths produced by the model for distant obstacle angles
of −0.5◦, −5.0◦ and −15◦, respectively.

initial angle of the distant obstacle is −0.5◦ (the same
as the nearby obstacle, but opposite sign), the nearby
obstacle dominates because it is closer. Opening that
angle to−5◦ increases the influence of the distant obsta-
cle because its exponential function grows until about
−8◦ (Fig. 4(c)). Hence, the distant obstacle dominates,
forcing the agent to the right of both obstacles. When
the angle is changed to −15◦, the influence of the dis-
tant obstacle decreases again because the exponential
function returns toward zero at larger obstacle angles.
Early in the run, the nearby obstacle dominates, forc-
ing the agent to the left. This closes the distant obstacle
angle, however, increasing its influence until it equals
that of the nearby obstacle. Thus, unlike the situation in
Fig. 12(b), the agent follows a route in between the two
obstacles. In each of these cases, the possible routes at
any moment appear as point attractors in the behavioral
dynamics, and switching between routes correspond to
bifurcations between attractor layouts.

Simulation #3c: Route Selection Through a Field of
Randomly Positioned Obstacles. Our ultimate aim
was to model route selection through a field of ran-
domly positioned obstacles to reach a goal. Initial goal

angle and distance were fixed at 0◦ and 9 m, respec-
tively. Ten obstacles were then randomly positioned
in a rectangular area 4 m wide and 7 m long cen-
tered between the agent’s initial position and the po-
sition of the goal (see Fig. 13(a)). We simulated the
model many times, using different random configu-
rations of obstacle on each trial, and found that the
agent always reached the goal without colliding into
any obstacles. Furthermore, the agent generally fol-
lowed smooth, efficient routes to the goal, never cross-
ing its own path or getting trapped. Several examples
are shown in Fig. 13(b)–(d).

Comparison of the Dynamical Model
with Potential Field Methods

Since Khatib’s (1986) influential paper, a dominant
technique for local obstacle avoidance in mobile robots
has been the potential field method. In this section, we
briefly introduce potential field methods, compare sim-
ulations of dynamical and potential field models in a
sample environment, and discuss the major differences
between the dynamical and potential field methods in
some detail.
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Figure 13. (a) Sample configuration of a field of obstacles used in Simulation #3c. Gray rectangle defines region in which obstacles were
randomly placed. (b)–(d) Sample paths produced by the model through a field of obstacles.

Potential Field Methods

The basic concept of potential field methods is the fol-
lowing: Given the task of traveling from a starting loca-
tion to a target location without running into obstacles,
two kinds of imaginary forces are generated that act on
the agent’s current location �χ . The first are attractive
forces due to an attractive potential field Uxd (�χ ). They
originate at the target location and pull the agent in the
direction of the target. The second are repulsive forces,
which are due to a repulsive potential field UO (�χ ) and
originate at obstacles to push the agent away. The at-
tractive and repulsive fields are linearly combined in an
artificial potential field Uart(�χ ). Using the gradient of
this field, we can compute a resultant force vector that
is used to control the agent’s direction and often speed
of motion:

Uart(�χ ) = Uxd (�χ )︸ ︷︷ ︸
Attractive Potential Field

+ UO (�χ )︸ ︷︷ ︸
Repulsive Potential Field

(5)

In Khatib’s (1986) formulation, the attractive potential
of the target increases with the square of its distance

from the agent,

Uxd (�χ ) = 1

2
kp(�χ − �χd )2 (6)

where �χd describes the target position and kp the posi-
tion gain. Conversely, the repulsive potential of an ob-
stacle obeys the inverse square law of distance ρ from
the agent, once the agent enters the obstacle’s radius of
influence ρo,

UO (�χ ) =



1

2
η

(
1

ρ
− 1

ρ0

)2

, if ρ ≤ ρ0

0, if ρ > ρ0

(7)

where η is a constant gain.
This basic concept can have slight variations in im-

plementation. For example, both the negative gradients
of the above potential fields (Khatib, 1986) and other
simpler linear functions (Arkin, 1989) of distance have
been used in the computation of force magnitude, and
potential functions have been constructed by combin-
ing individual obstacle functions with logical opera-
tions (Newman and Hogan, 1987). There have also been
some enhancements such as taking into consideration
the agent’s velocity in the vicinity of obstacles (Krogh,
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Figure 14. A typical performance example. Large tick marks indi-
cate 1 m intervals.

1984). Potential field methods have been applied to off-
line path planning (Thorpe, 1985) and in mobile robots
with real sensory data (for example by Arkin, 1989).

A Typical Performance Example

We tested both methods in a sample environment con-
taining five obstacles (see Fig. 14), using Khatib’s
(1986) original potential field formulation. The envi-
ronment consisted of a 5 m × 6.5 m room with a start-
ing location (indicated by the circle), a target location
(labeled goal), and five randomly positioned obstacles
(shown as dots). The circles around the obstacles in-
dicate the limit distance of repulsive influence for the
potential field model (0.8 m). The agent was assumed to
have a diameter of 0.5 m, similar to a human, and an ini-
tial heading of 0◦ (parallel to the x-axis). Although the
potential field is often used to control the agent’s veloc-
ity (direction and speed), in all our simulations we used
the resultant force vector to control the agent’s direc-
tion only, while holding speed constant, analogous to
the dynamical model. The straightforward application
of the potential field method to mobile robot naviga-
tion treats the robot as a particle; however, most mobile
robots are non-holonomic, which means they cannot
move in arbitrary directions (e.g., without first stop-
ping and turning). In our simulations and robot exper-
iments, we used a controller based on the idea that the
front point of a differential-drive robot can be treated
as holonomic (Temizer, 2001; Temizer and Kaelbling,
2001). An alternative approach, used by Arkin (1989),
for example, is to have the robot repeatedly: stop, turn

in the direction of the local force, traverse a short lin-
ear segment, stop, reorient, etc. The details of the paths
resulting from this method would differ from those we
show here, but will be qualitatively similar.

Path 1 shows the trajectory generated by the potential
field method, and path 2 (which is almost a straight
line) that generated by the dynamical model. In this
simulation, the agent moved with a constant translation
speed of 0.5 m/s for both methods. Path 1 has a length of
7.55 meters and was traversed in 15.1 seconds, whereas
Path 2 was only 6.70 meters long and was traversed in
13.4 seconds. We also implemented the potential field
method in a research robot (RWI B21r indoor robot)
and we note that the software simulations closely reflect
the actual trajectories observed.

The 3D plots in Fig. 15 represent the artificial poten-
tial field and the resultant force vectors for the example
scene. The top graph (Fig. 15(a)) shows the artificial
potential field and the middle graph (Fig. 15(b)) shows
the magnitudes of the resultant force vector at each lo-
cation in the environment, with coordinates that match
those of Fig. 14. The starting point is near the high cor-
ner, the goal is near the low corner, and the obstacles
generate tall cones that extend to infinity, guaranteeing
that the agent will never collide with an obstacle.

Differences Between the Two Methods

In this section we consider high-level conceptual dif-
ferences between the dynamical model and the poten-
tial field method. A low-level quantitative comparison
would not be appropriate since the computational out-
comes of the two methods are quite different: the po-
tential field method produces a resultant vector that
directly controls the agent’s direction, whereas the dy-
namical model produces an angular acceleration that
controls the agent’s rotation.

Angular Acceleration vs. Direction Control. Look-
ing at the example in Fig. 14, it is apparent that the dy-
namical model tends to traverse smoother and shorter
paths than the potential field method. Similarly, the
fluctuations in rotation speed are smooth for the dy-
namical model (Fig. 16), in contrast to sharp, rapid
turns with the potential field method. This is partially
due to an important general difference between the
approaches: the dynamical model explicitly controls
the agent’s angular acceleration and deceleration rather
than the translation direction, and thus tends to generate
smoother trajectories. The damping term constrains the
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(a)

(b)

Figure 15. (a) Artificial potential field inside the room and (b) and vector magnitudes.

rotational acceleration, which also acts to smooth the
path. In contrast, the potential field method can gener-
ate rapid changes in the direction of the velocity vector
resulting in frequent sharp turns, depending on the com-
plexity of the artificial potential field (which usually is
composed of many hills and valleys even if there are
only three or four obstacles; see Fig. 15).

The Obstacle Function. A second reason for
smoother, shorter paths stems from another important
difference between the two methods. Whereas the ef-
fect of the target is similar in both, serving to draw
the agent toward the goal, the effect of an obstacle is
very different. In the potential field method, the ob-
stacle function depends only on the shortest distance
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Figure 16. Rotation speed graph for the dynamical model.

between the boundaries of the agent and the obstacle,
independent of the agent’s heading. In the dynamical
model, on the other hand, the obstacle function explic-
itly depends on the agent’s heading relative to the ob-
stacle, as well as obstacle distance. This is apparent in
Fig. 17, which plots the obstacle’s repulsive influence
as a function of its heading angle and distance for each
method.

Under the potential field method, once an agent en-
ters the obstacle’s circular region of influence, trav-
eling toward the target on a chord of the circle, the
magnitude of the repulsive force begins to increase.
We can decompose this repulsive force into two or-
thogonal components: a longitudinal component par-
allel to the direction of the goal’s attractive force, and
a lateral component perpendicular to it. As the agent
travels along the first half of the chord, the magnitude
of the longitudinal component increases more rapidly
than the lateral component. But as it approaches the
mid-point, the longitudinal component becomes large
relative to the attractive force of the goal, and the lat-
eral component increases rapidly, leading the agent to
turn away from the obstacle under the influence of the
lateral component. For fat (as opposed to point) agents,
as the agent passes the obstacle, the lateral component
continues to increase and push it farther away, even af-
ter the agent has made a sufficient positional correction
to avoid the obstacle. This results in typical swerving
trajectories like those in Fig. 14.

In contrast, the dynamical model makes effective
use of the heading angle with respect to the ob-
stacle (φ − ψo), so that the repulsive influence de-
creases rapidly with obstacle angle as well as distance
(Fig. 17(a)). Consequently, once the agent makes a suf-
ficient heading correction, the rotation ceases and it
simply passes the obstacle on a smooth path. We also
observed that the obstacle angle and obstacle distance
terms should be adjusted together, for it is the com-
bined effect of these two parts that produce the smooth
and human-like trajectories.

We performed two simulation experiments that
demonstrate these effects by manipulating the effective
distance of obstacle repulsion. In the first experiment
(Fig. 18), the well-balanced parameters of the dy-
namical model were left intact (c3 = 6.5, c4 = 0.8).
To approximate this effective distance, the radius of
influence in the potential field model was increased to
ρo = 8 m (Fig. 18(a)). In the simulation (Fig. 18(b)),
the agent starts in upper left corner with a heading of
−28 degrees, almost facing the obstacle. The dynam-
ical model generates the smooth trajectory labeled
path 2. The potential field method traverses path 1(a)
toward the obstacle, abruptly turns left, and continues
on path 1(b). The forces acting on the depicted posi-
tion of the agent are also represented, including the
repulsive force of the obstacle, the attractive force of
the target, and the resultant force vector. The obstacle
repulsive force has a large longitudinal component but
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(a)

(b)

Figure 17. Obstacle avoidance components: (a) dynamical model and (b) potential field method. Parameter values for the dynamical model
are ko = 66, c3 = 6.5, c4 = 0.8, and for the potential field method are η = 1, ρo = 4.

a small lateral component (due to the nearly head-on
approach to the obstacle), so the agent comes close to
the obstacle before the lateral repulsive force steers it
away.

In the second experiment, a smaller effective dis-
tance of repulsion (0.8 m) was selected for both
methods (Fig. 19). The dynamical model generates
path 2 and path 3 (c3 = 1 and c3 = 0.5, respectively,
with c4 = 12), with very close approaches to the ob-

stacle and sharper turns. These paths demonstrate the
importance of tuning both the distance and heading an-
gle terms in the model’s obstacle component together.
With these parameter values, the effective distance is
too short for the dynamical model, generating collision
trajectories if the width of the agent is taken into ac-
count. The potential field method produces Path 1; the
agent is depicted on this path with the corresponding
force vectors.
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(a)

(b)

Figure 18. Experiment 1: (a) distance parts of both methods and (b) simulation results.

Fat Agents and Wide Obstacles. The potential field
method inherently takes account of agent and obsta-
cle width, because distance is measured between the
boundary or envelope of the agent and that of the ob-
stacle. In contrast, the current version of the dynamical
model treats the agent and obstacles as points, and thus
does not incorporate an explicit concept of width. Hu-
mans are very sensitive to the width of openings rela-
tive to their body size (Warren and Whang, 1987). The

dynamical model implicitly expresses this relationship
in the rate of exponential decay with obstacle distance
(c4 parameter). As illustrated in the previous section
(Figs. 18 and 19), this determines how wide a berth the
agent gives to an obstacle, and can thus be adjusted for
body size.

However, the model is not yet designed to deal
with wide obstacles. One possibility is simply to in-
clude the size of each obstacle as a parameter, but in a



Dynamical Model of Steering 29

(a)

(b)

Figure 19. Experiment 2: (a) distance parts of both methods and (b) simulation results.

biologically-inspired model we seek to define the input
in “proximal” terms such as visual angle rather than
“distal” terms such as object size. Another approach
would be to convolve the obstacle angle function over
space, so that the entire visual angle of the obstacle is
repulsive, rather than just a point at its center. It might
also be possible to scale the obstacle angle function
to the visual angle of the obstacle, which would cause
nearby or large obstacles to be weighted more heavily.

Local Minima and Cancellation. The form of the
obstacle function creates another important difference
between the two approaches. In potential field methods,
the magnitude of the repulsive force tends to infinity
as the agent approaches the obstacle. This guarantees
that the agent will never run over an obstacle. In the
dynamical model, on the other hand, the obstacle influ-
ence is based on exponential decay and never produces
infinite angular acceleration—a more realistic choice



30 Fajen et al.

for physical agents and humans. Combined with the
difference in control variables (translational velocity
vs. angular acceleration), this results in a significant
advantage for the dynamical model, although it also
creates a minor disadvantage.

Advantage. The potential field approach is a local ob-
stacle avoidance method, and local minima are a seri-
ous problem. An agent using the potential field method
alone without a high level path planner can easily get
stuck in local minima, even in the simplest scenes. The
dynamical model, in contrast, has few such problems, at
least in simple scenes. Because it only controls angular
acceleration and not the agent’s speed (never stopping
the agent), local minima are avoided in two ways: the
agent either takes advantage of the canceling effect (de-
scribed below) and passes between the obstacles (if the
distance decay parameter c4 is big), or it takes a path
around the obstacle cluster (if c4 is small). In the latter
case it may overshoot the target, but it easily homes
in from another direction. Thus, with appropriate pa-
rameter settings the dynamical model can avoid local
minima in simple scenes.

Disadvantage. However, if the locations of the ob-
stacles are symmetrical about the agent’s path to the
target, then their contributions to the angular acceler-
ation will have similar magnitudes but opposite signs,
and therefore cancel each other. This canceling effect
creates a spurious attractor in the center of the obsta-
cle array, which may lead the agent into a gap that is
too small, or even to crash into an obstacle at the cen-
ter of a perfectly symmetrical array. As noted above,
one way to avoid the canceling effect is to increase
obstacle repulsion with distance by reducing the ex-
ponential decay term c4, thereby inducing an outside
path around the entire array. In cases with only a few
obstacles, adding a noise term to the model may allow
it to escape unstable fixed points.

These advantages and disadvantages are illustrated
in Fig. 20. In this example the agent starts in the lower
left corner with an initial heading of 0◦, and moves at
a constant translation speed of 1 m/s. Path 1 shows a
sample local minimum for the potential field method.
The agent is stuck in a bowl (a region of small outward-
pointing resultant vectors surrounded by large inward-
pointing vectors) and is reduced to oscillating back and
forth. Another type of local minimum is being frozen in
a location where the attractive and repulsive forces can-
cel each other, producing a resultant force of zero mag-

Figure 20. Example of a local minimum, canceling effect and out-
side path.

nitude. Path 2 is traversed with the dynamical model
(c4 = 1.6). Since there are obstacles on both sides of
the agent, their combined contribution to the angular
acceleration demonstrates the canceling effect along
the path, and the agent passes between them. Path 3 is
also traversed by the dynamical model using a more
gradual exponential decay with distance (c4 = 0.4).
The repulsive regions of the obstacles are larger, and
therefore they force the agent to take an outside path.

Agent Speed. A final difference between the two
methods is that the dynamical model assumes a con-
stant translational speed on the part of the agent. This is
indeed the case in our human data: subjects tend to ac-
celerate from a standstill and then maintain an approx-
imately constant walking speed. However, the model
produces different paths at different constant speeds,
with all other parameters fixed. The reason for this be-
havior is that, when the agent enters a region that pro-
duces a non-zero angular acceleration, the accelerating
effect lasts for a shorter time at higher speeds, induc-
ing a smaller rotation. In contrast, since the potential
field equations determine the direction of the agent’s
motion, it will always traverse the same path indepen-
dent of speed. For any physical agent with mass and
momentum, the responsiveness of trajectories to speed
may actually be a desirable effect.

An example for the dynamical model is presented in
Fig. 21. With a constant speed of 0.25 m/s, the model
traverses path 1 to the left of the obstacle, but with a
speed of 1.0 m/s it takes path 2 to the right. In these sim-
ulations, the agent’s initial heading was 0◦ (horizontal),
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Figure 21. The effect of different translation speeds on the dynam-
ical model generated paths.

as shown. On path 1, the agent initially rotated toward
the target (counter-clockwise) and made a large enough
turn before the obstacle’s influence took effect that the
obstacle pushed it to the left. On path 2, it began to
rotate in the same direction (counter-clockwise), but
because it was translating faster it did not have time to
rotate past the obstacle before feeling its influence, so
the obstacle pushed it to the right. It seems likely that
walking speed will similarly affect human paths, but
this remains to be empirically tested.

Although the human subjects in our experiments
tended to maintain an approximately constant walking
speed, there are likely to be certain situations in which
humans decelerate if they get too close to an obstacle
in order to avoid an immanent collision. Duchon et al.
(1998) designed a robot that avoids collisions (in part)
by decelerating when the robot’s time-to-contact (Lee,
1976) with an obstacle reaches a margin value. A sim-
ilar mechanism could easily be added to the dynamical
model to guarantee collision avoidance.

Discussion

The aim of this project was to construct a dynami-
cal model of steering, obstacle avoidance, and route
selection that exhibits the stability and flexibility ev-
ident in human locomotion without relying upon an
internal model of the environment. In this regard, we
believe the model succeeds in capturing the behavioral
dynamics. The human data were reproduced with fits
near 1.0 and trajectories through the space of behav-

ioral variables that closely resemble those produced by
humans. In addition, it was shown how goal and obsta-
cle components could be additively combined to yield
smooth, stable trajectories in more complex scenes.
The model thus scales linearly with the complexity of
the scene. In practice, the model is even more compu-
tationally efficient, because steering can be based on a
limited sample of a few meters ahead and close to the
current heading direction, and does not require a mem-
ory representation of the complete 3D scene. The re-
sults demonstrate that on-line, information-based con-
trol is sufficient for steering, obstacle avoidance, and
route selection in simple environments, without an ex-
plicit world model or advanced path planning. In ef-
fect, a route through the environment emerges from
the agent’s local responses to goals and obstacles.

Behavioral Dynamics and Laws of Control

In the introduction, we suggested that the behavioral
dynamics arise from the implementation of laws of con-
trol in a physical agent that interacts with a physical
environment. The present model provides a descrip-
tion of the behavioral dynamics, but it also allows us to
make some inferences about laws of control. Because
a physical agent is a 2nd-order dynamical system, the
model of observed behavior is necessarily (at least)
2nd-order. However, following Schöner et al. (1995),
it is advantageous for the control law to be 1st-order, so
that the stability of its solutions can be assured. Thus,
we can split the model into a 2nd-order physical system
and a 1st-order control law. In the control law, angular
velocity φ̇ is a function of the goal and obstacle compo-
nents and quickly relaxes to an attractor for the desired
heading, given sensory information about the current
goal and obstacle angles. The physical system then de-
termines the angular acceleration φ̈ based on the dif-
ference between the desired and current heading, and
a fixed damping term. Preliminary simulations have
shown that this system produces comparable fits to the
human data (with different parameter values), and thus
gives rise to the behavioral dynamics described by the
present model.

What visual information might specify the critical
variable φ − ψ , the angle of a goal or obstacle from
the current heading direction? An obvious possibility
is the angle between the egocentric direction of the ob-
ject and the agent’s locomotor axis, which could be
determined from camera input or sonar sensors and
knowledge of the orientation of the effectors (wheels).
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Another possibility is the visual angle between the ob-
ject and the heading specified by optic flow. There are a
number of approaches to recovering heading from flow
(Hildreth and Royden, 1998; Warren, 1998a), and this
approach has the advantage that the control information
is all in the visual domain. Recent evidence indicates
that humans actually use both sources of information:
egocentric direction dominates under low-flow condi-
tions, but flow dominates as detectable motion is added
to the scene (Rushton et al., 1998; Warren et al., 2001;
Wood et al., 2000). The linear combination of redun-
dant information about the angle φ − ψ provides for
robust locomotor control under varying environmen-
tal conditions. Finally, note that even though we use
the current distance d of an object as a variable in the
model, absolute distance need not be recovered. An
equivalent solution is to use the current time-to-contact
with the object, approximated by the ratio of its visual
angle to its rate of expansion (Lee, 1980; Tresilian,
1990), which can also be determined from the optic
flow (Duchon et al., 1998).

We have emphasized how the information-based ap-
proach promotes the view that behavior is guided by
occurrent information, rather than internal represen-
tations of the environment. Another type of internal
representation often employed in mobile robots is an
explicit model of the relationship between control vari-
ables and resulting body kinematics, that is, a model of
the plant dynamics. Such a model is thought to be nec-
essary for the agent to predict future states of the body.
If behavior is a consequence of laws of control and
physical constraints, however, then the agent does not
need an explicit model of the plant dynamics. Rather,
the agent learns a set of control law parameters that
yield successful behavior for the given set of physi-
cal constraints. If these constraints change (e.g., if the
agent’s mass increases, or the medium changes from
air to water), the agent may adapt by tuning the pa-
rameters until behavior is stabilized again. Thus, the
agent’s “model” of the plant dynamics is simply a set
of parameter values that result in successful behavior
within a given set of constraints.

Comparison with Other Approaches

The present model was inspired by the dynamical ap-
proach of Schöner et al. (1995) and thus has close affini-
ties with their model. However, we depart from it in two
related ways. First, the present model is intended as a
description of the behavioral dynamics, spanning the

agent’s control laws and the physics of the agent and
environment, whereas Schöner et al.’s (1995) model is
intended as a control algorithm that treats the physics as
an implementation detail. We believe that physical and
biomechanical constraints codetermine behavior and
may actually contribute to a solution, and thus should
be incorporated in the model. Second, it follows that
our model controls angular acceleration (φ̈) rather than
angular velocity (φ̇). This was motivated directly from
measurements of human walking, and is a consequence
of the fact that any physical agent has mass. Acceler-
ation control contributes to the smooth, efficient paths
exhibited by the model.

Detailed comparisons with the potential field ap-
proach revealed that the dynamical model has certain
advantages. These include smoother, shorter trajecto-
ries, successful evasion of local minima in simple situ-
ations, and responsiveness to different speeds of travel.
On the other hand, the model has yet to incorporate a
concept of obstacle width and is subject to the cancel-
ing effect in symmetrical configurations. These seem
to be tractable problems that may be dealt with by mod-
ifications to the model.

Conclusion

In sum, the present model provides a compact descrip-
tion of the behavioral dynamics of steering and ob-
stacle avoidance that gives rise to the pattern of route
selection exhibited by human subjects in simple scenes.
Simulations of the model in more complex scenes, in
which goal and obstacle components are linearly com-
bined, revealed that the agent takes smooth, efficient
paths to the goal. This suggests that route selection in
autonomous agents need not require explicit path plan-
ning, but may emerge on-line as a consequence of the
local steering dynamics.

Appendix

The full model is given by the following equation:

φ̈ = −bφ̇ − kg(φ − ψg)(e−c1dg + c2)

+
#obstacles∑

i=1

ko
(
φ − ψoi

)
e−c3|φ−ψoi |(e−c4doi ) (A1)

Note that ψg, dg, ψo, and do change as the position of
the agent changes (see Fig. 1). However, each of these
variables can be expressed as a function of the (x, z)
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position of the observer:

ψg = cos−1

(
(Zg − z)

dg

)
(A2)

dg = [(Xg − x)2 + (Zg − z)2]1/2 (A3)

ψo = cos−1

(
(Zo − z)

do

)
(A4)

do = [(Xo − x)2 + (Zo − z)2]1/2 (A5)

where (Xg, Zg) and (Xo, Zo) are the coordinates of the
goal and obstacle, respectively. Written as a system of
first-order differential equations, the model is given by:

ẏ1 = φ̇

ẏ2 = ÿ1 = φ̈ = −bφ̇ − kg(φ − ψg)(e−c3dg + c2)

+
#obstacles∑

i=1

ko
(
φ − ψoi

)
e−c3|φ−ψoi |(e−c4doi )

(A6)
ẏ3 = ẋ = V sin φ

ẏ4 = ż = V cos φ

where V is the speed of the observer, which was held
constant at 1 m/s in our simulations.
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Note

1. Schöner et al. (1995) used the term “behavioral dynamics” to
refer to a control algorithm independent of the physical imple-
mentation, which is closer to our notion of a “law of control.”
In contrast, we develop the concept of behavioral dynamics as a
description of the observed behavior of the physical agent.
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