Review

Autonomous robots

- Robot = Programmable machine
- Autonomous = Generate their own
 behavior based on on-board sensor information
- In practice often a hybrid, low level
 tasks are done autonomously

Dynamics

Given a state and sensor input tells us how system changes

Where does the robot look and what does it sees there

$$
f(\phi, \text { senordata })
$$

How fast does it turn left or right?

Important: Where is $\dot{\phi}=0$? Where does the robot stop changing?

Attraction and repulsion

Move away from here

Come here and stay there

The target attractor

This would cause a very abrupt change in behavior at the discontinuity

Forcelets for repellors

$f_{i}=\lambda_{i}\left(\phi-\psi_{i}\right) e^{-\frac{\left(\phi-\psi_{i}\right)^{2}}{2 \sigma^{2}}}$

Effectively: Turn away from angle ψ with strength λ

Bifurcations

Fixed points appear and vanish
\rightarrow Continuous change in a parameter causes discrete change of behavior

Bifurcations

input

Symbolic \& sub-symbolic

- So far we need know exactly where obstacles are and have one angle per obstacle
- But how to do this in a mobile robot in an unknown environment?

\rightarrow Set up several forcelets that overlap and build an attractor at the appropriate point, ideally have a bifurcation when enough space between obstacles

Symbolic \& sub-symbolic

- One forecelet per sensor
- Each votes to turn away from its respective direction
- Strength of vote modulated by
 sensor value

Simulations

- Pin robot, demonstrate
- Forcelet buildup when obstacle approaches
- Two obstacles and a bifurcation
- Unpin rotation
- Target attraction
- Obstacle avoidance
- Unpin linear speed
- See overall behavior

Other approaches to planning

- Potential fields
- Vector field histogram
- Cell decomposition
- Rapid random trees
- Roadmaps
- Behavior based robots

Potential fields

- Idea from physics
- Roll down the potential hill

- Notoriously vulnerable to local minima
- Very well researched, many fixes

b)

Vector field histogram

- First build distribution of probable obstacle positions
- Then pick a valley close to target

Springer Handbook of Robotics

Configuration space

Springer

Cell decomposition

- Take a map of the entire configuration space
- Graph search
- Scales terribly in higher dimensions

Rapid random trees

 Initialize empty tree T- Draw samples from space
- Identify closest node in graph
- Draw line from node to point, up to max distance, attach as limb to tree
- If in goal region, break

Roadmaps

- Sample a part of the world for "highways"
- Use local planner to get to and from highways

Behavior

- Take various fairly simple modes of behavior
- Dynamically switch between them
- E.g.: A mouse is exploring. Then it finds food and eats. Then it sees a cat and flees.

