Navigation

Gregor Schöner May 2022

Problem

- we talked about how to plan motion toward targets avoiding obstacles
- in many cases, information about targets may be available through a map that represents where relevant locations are in the world
- to use a map, a robot/organism needs to known "where it is" on the map: egolocation estimation
- that estimate must be updated as a robot/ organism moves...

if the agent knows its current velocity=heading direction + speed (and keeps track of time), it can estimate its change of position by integration

[McNaughton et al., Nature reviews neuroscience 2006]

- a long history in technology... dating back to literal "navigation": sailing ships...
 - estimating heading direction based on a compass
 - estimating speed by counting "knots"... which entails an estimate of time
 - updating position in a map

modern technology increases the precision

- e.g. inertial guidance by measuring acceleration
- precise measurement of time
- with good control, the control signals can also be used to predict the new state ...
- optimal estimation integrates prediction and measurement...

fundamental problem

the integration leads to an accumulation of uncertainty...

the principle of Brownian motion...

- a need for "recalibration" or re-setting of the estimate.. based on "recognizing" the true location on the map...
- historical solution:
 - landmark recognition...
 - triangulation

modern variants based on special beacons, GPS etc

animals including humans use path integration

[Loomis, Klatzky, 1993]

animals including humans use path integration

blind from birth

blind from accident

seeing

Landmark recognition

Iandmarks are not necessarily objects...

empirical evidence that views serve to estimate ego-position and pose

 evidence for views used
from animal
behavior
and neural
data

[Peer, Epstein, 2021]

A Experimental environment

Mountains

Maps

when can we say does an animal use a map?

rather than use stimulus-response chaining

=> when it can take short-cuts

[Peer et al, 2020]

[Poucet, 1993]

SLAM

Simultaneous Localization and Mapping

[Durrant-Whyte, Baily, 2006]

SLAM

problem of learning/optimizing path integration... and using this to associated landmark information with locations

(Neural) dynamics of navigation

dynamics for ego-position estimation

dynamical approach to learning the map: network of locations (home bases) at which the agent knows where it is relative to others

dynamics of path planning

Robotics and Autonomous Systems 20 (1997) 133-156

Robotics and Autonomous Systems

Self-calibration based on invariant view recognition: Dynamic approach to navigation

Axel Steinhage^{a,*}, Gregor Schöner^b

^a Institut für Neuroinformatik, Ruhr-Universität Bochum 44780 Bochum, Germany ^b Centre de Recherche en Neurosciences, Cognitives, CNRS 13402 Marseille, Cédex 20, France

Neural and behavioral architecture

Visual place navigation

- a visual surround (unsegmented) acquired in clusters around particular locations (home bases)
- views are stored together with current position estimate (translation/rotation)

Evidence for home bases

animals in given terrain build home bases by rearing in locations where they spend most of their time

7	7'	0	0'	1
6'	7"	0"	1"	1'
6	6*	С	2"	2
5 '	5*	4*	3*	2'
5	4'	4	3'	3

[Eilam, Golani, 1989]

Visual place navigation

Each view in home base is matched to current view.... with all possible rotations actively generated from memorized view

best match here: home-base 2, dPhi=r

Visual place navigation

- Correlation function across rotation angle peaks sharply at true angular orientation of agent, even if translatior is not precise...
- so that estimation of orientation is possible while agent is in recepti field of place cell

Visual place navigation

Correlation with actively shifted memory views decays spatially in way that reflects how distal the view is.... place field..

Visual place navigation

The level of correlation across multiple views within a home base generates a place view representation of translation => position estimate

Neural and behavioral architecture

Integration by an attractor dynamics

- every sensory estimate contributes a "force-let" to a dynamical system whose attractor is the estimate of ego-position
- for vision: space to rate code... removes the problem of normalization

Recalibration from instability

with visual match, a strong attractor force-let induces instability in which the estimate gets reset to the visually specified estimate

which resets the dead-reckoned estimate as well

Recalibration from instability

with visual match, a strong attractor force-let induces instability in which the estimate gets reset to the visually specified estimate

which resets the dead-reckoned estimate as well

Neural and behavioral architecture

Integrating it all: dynamics all the

a reset event

Further development:

complex behavioral organization

robotic implementation

Autonomous behavioral organization

neural dynamics organizes sequence of behaviors...

Autonomous behavioral organization

neural dynamics organizes sequence of behaviors...

How neurally realistic is this?

Neural mechanisms of navigation

neural representation of path integration

[McNaughton et al., Nature reviews neuroscience 2006]

Heading direction

- Neural evidence for head-orientation cells... that function as heading direction representation
- Neural attractor dynamics (neural field) for heading direction

[McNaughton et al., Nature reviews neuroscience 2006]

Place and grid cells

neural representation of location in Hippocampus and Entorhinal Cortex

[McNaughton et al., Nature reviews neuroscience 2006]

Place and grid cells

support building a place representation by a neural field

[McNaughton et al., Nature reviews neuroscience 2006]

Neural dynamics of path integration

[McNaughton et al., Nature reviews neuroscience 2006]

Neural dynamics of path integration

[McNaughton et al., Nature reviews neuroscience 2006]

Neurally inspired technical solution

(a)

(c)

(c)

[Ball, Wyeth, Cork, Milford, 2013]

(a)

(c)

[Ball, Wyeth, Cork, Milford, 2013]

RAT-Slam

[Ball, Wyeth, Cork, Milford, 2013]

Event-based place recognition

spiking neural vision system...

[Fischer Mildord, 2020]

Neuromorphic head-direction estimate

[Kreiser et al. Sandamirskaya, Frontiers 2019]

Neuromorphic head-direction estimate

[Kreiser et al. Sandamirskaya, Frontiers 2019]

Conclusions

- the navigation problem entails both knowing where you are and how to go places
- navigation can be performed by behavioral and neural dynamics
- recalibration of location based on recognition ... can be view-based
- integration by (neural) dynamics ... in which space-time continuous processes... lead to discrete transitions at instabilities