
Navigation
Gregor Schöner

May 2022



Problem
we talked about how to plan motion toward 
targets avoiding obstacles

in many cases, information about targets may 
be available through a map that represents 
where relevant locations are in the world

to use a map, a robot/organism needs to 
known “where it is” on the map: ego-
location estimation

that estimate must be updated as a robot/
organism moves… 



Dead-reckoning/path integration
if the agent knows its current velocity=heading 
direction + speed (and keeps track of time), it can 
estimate its change of position by integration 
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Box 1 | Path integration in mammals and some neurophysiological correlates

Darwin recognized that most animals can use self-motion cues to keep track 
of their location relative to a ‘home base’128, but it was not until recently that 
firm experimental evidence for such a path integration process in mammals 
appeared4, and it became clear that the brain can not only calculate a homing 
vector to a fixed location in space, but can also maintain a map-like 
representation of space using only an initial reference and self-motion 
information (for reviews, see REFS 9,12). Making use of the strong motivation 
of female rodents to retrieve pups that have been displaced from the nest to a 
shallow cup some distance away, it was shown that gerbils can search in 
complete darkness and return in a direct line to the original location of the nest, 
even if the nest has been removed (see panel a). With the cup at the centre of 
the dark arena, rotating either the entire arena while the animal was on the 
cup, or only the cup itself, did not prevent the animal from returning to the 
same location in the (inertial) laboratory reference frame; however, rotation of 
the cup through 37 degrees with a slow acceleration profile (0.24 deg s–2), 
presumably below the animal’s vestibular threshold, resulted in a return 
trajectory error of the same magnitude. In panel a, S1–3 represent vectors 
lengths of segments of the outbound journey, and ϕ1–3 are corresponding 
head directions. Variables x1–3 and y1–3 are the cartesian components of the 
segment vectors which, in principle, could be summed to compute the 
homing vector. ‘Starting location’ refers to the beginning of the homing 
trajectory. Insight into the neural basis for angular path integration came from 
the discovery of head direction cells, the firing rates of which depend on the 
direction the animal’s head is facing (a simulated typical head direction cell 
tuning curve is illustrated in the polar plot in which firing rate is represented by 
the radial coordinate and direction is represented by the angular coordinate; 
see panel b). Directional tuning is relative in the sense that, although all head 
direction cells maintain their directional tunings relative to each other, the 
network is not bound to any absolute directional reference. For example, the 
same cell can have different geocentric directional preferences in different 
enclosures and, in the absence of visual input, head direction cells track head 
angular velocity and fire over a restricted range of relative directions; however, 
the network can accumulate directional error with respect to its original 
setting. Linear path integration is sufficient to update the positional firing of 
hippocampal pyramidal cells (see panel c). On a task in which a rat runs on a 
linear rail from a moveable box to a fixed goal at the end of the track, pyramidal 
cells in area CA1 fire in relation to distance from the box as the animal leaves 
it (over distances of more than several body lengths), before shifting reference 
frames to fire in relation to visual cues (CA1 light) or, in darkness, the end of 
the track (CA1 dark). The figure illustrates the configurations of the start box 
on the track and the journey types, which were presented in random order. 
Panel d shows the correlation matrices of CA1 neuronal ensemble population 
vectors for each location on the full track versus every location on the full 
track (Box 1), and for each location on the shortened tracks, in which the box 
was shifted closer to the fixed goal site (Box 2–Box 5), versus every location on 
the full track. The black lines represent the reference frame of the box; white 
lines represent the laboratory/track reference frame. Panel a modified, with 
permission, from REF. 140   (1980) Springer. Panels c and d reproduced, with 
permission, from REF. 33  (1996) Society for Neuroscience.
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Dead-reckoning/path integration

a long history in technology… dating back to 
literal “navigation”: sailing ships… 

estimating heading direction based on a compass

estimating speed by counting “knots”… which entails an 
estimate of time 

updating position in a map



Dead-reckoning/path integration

modern technology increases the precision

e.g. inertial guidance by measuring acceleration 

precise measurement of time

with good control, the control signals can also be used to 
predict the new state … 

optimal estimation integrates prediction and measurement… 



Dead-reckoning/path integration

fundamental problem

the integration leads to an accumulation of uncertainty… 

the principle of Brownian motion… 

time, t
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Dead-reckoning/path integration

a need for “recalibration” or re-setting of the 
estimate..  based on “recognizing” the true 
location on the map…

historical solution: 

landmark recognition… 

triangulation

modern variants based on special beacons, GPS 
etc 



Dead-reckoning/path integration

animals including humans use path integration 
LOOMIS ET AL. 

Figure 1. Depiction of a triangular path used in the pathway 
completion experiment (upper panel). (The subject was led along 
Leg A [2,4, or 6 m], pivoted through an angle of 180" - 60°, 90°, 
or 120°), and then led along Leg B [2,4, or 6 m]. The correct turn 
toward home is given by 180" - P,  and the length of the correct 
return leg is C. In the text we often refer to the internal angles a 
and 6 of the triangle rather than the actual turn angles. The lower 
panel shows the same triangle with a representative response given 
by the solid curved line. The response is measured in terms of the 
walked distance C' and the internal angle P'.) 

90°, or 120"). All triangles started at a common origin, and initial 
legs were aligned, as shown in the upper left panel of Figure 2. 
On each trial, the subject was passively led by an experimenter 
along the two outbound legs of the triangle. Specifically, the sub- 
ject held onto the ends of handlebars and was led from the origin 
over the first leg, was stopped and pivoted through the turn in a 
clockwise direction, and was then led over the second leg. At the 
terminus of the second leg, the subject released the grip and at- 
tempted to return unaided to the origin, as depicted at the bottom 
of Figure 1. To eliminate feedback from one trial to the next, the 
subject was led from the stopping point through a circuitous route 
(lasting about 20 s) back to the origin for the next trial. The order 
of the triangles was random, and the subject was informed that 
the lengths of the legs and the angle would vary randomly from 
trial to trial. A few congenitally blind subjects required familiar- 
ization with the shape of a triangle. This was done by having the 
subject feel a triangular block and then identify a triangle from 
among three shapes (square, triangle, and trapezoid). 

Retrace-completion task. The subject was led through ;I 

pathway of two or three segments a total of six times. After each 
traversal, the subject either retraced the pathway or completed II 
by returning directly to its origin, and he or she was then givcn 
feedback. For pathway completion the assistant stood at the on- 
gin and called to the subject, thus providing feedback through au- 
ditory localization. For the retrace response, the subject received 
verbal feedback (e.g., "you turned too much;" "you went too far 
in retracing the first leg"). Three of the traversals were followed 
by retracing and three were followed by completion; there was no 
warning before the traversal as to which response would be re- 
quired. This task was performed with four different pathway con- 
figurations; all six tests on a single configuration were completed 
before the next was introduced. The four configurations were 
used by Klatzky, Loomis, Golledge, Cicinelli, Doherty, and Pelle- 
grino (1990), as part of a larger set. The turning points (i.e., seg- 
ment ends) were on the circumference of a circle 6 m in diame- 
ter (cf. 10 m and 3 m in the earlier study). The configurations 
were selected to vary in difficulty, and the same identifying num- 
bers used previously are used here (5 and 7 were two-segment 
pathways, with 7 producing more errors, and 9 and 11 were 
three-segment pathways, with 11 producing more errors; three of 
the pathways are shown in the results.) The order of the pathways 
was counterbalanced over subjects, and within each subject, the 
order of responses was pseudorandom, with these restrictions: 
Half the pathways were tested first with retracing and half were 
tested first with completion, and the same response type occurred 
no more than twice in succession with a given pathway. 

Results: Simple Locomotion Tasks 

The measure of walked distance was obtained by sum- 
ming the distance between successive points on the trajec- 
tory (cumulative path length). The measure of turn was 
obtained from the first 2 m of the first leg and the last 2 m 
of the second leg. A regression line was fit to each segment 
to determine heading in the work space, and turn was then 
measured as the change in heading. (Turn was always to the 
right.) These tasks indicated no differences among groups in 
the ability to perform simple reproductions of turns and 
linear segments. 

Distance reproduction and estimation. Errors of dis- 
tance reproduction changed from overestimation for the 
2-m distance (26 cm) to increasing underestimation with 
longer paths (-27, -40, -144, and -102 cm for distances 
of 4, 6, 8, and 10 m, respectively). This same trend was 
observed in our earlier study. An analysis of variance 
(ANOVA) on group and distance showed an effect only of 
distance, F(4, 132) = 5.66, p < .001. Absolute error in- 
creased over the five distances (errors were 42, 66, 109, 
161, and 249 cm), and again, the ANOVA showed only a 
distance effect, F(4, 132) = 15.94, p < .001. 

Signed errors of distance estimation showed trends sim- 
ilar to those of reproduction (errors over the five distances 
were 32, 12, 31, -88, and -72 cm). The ANOVA on group 
and distance showed only an effect of distance, F(4, 136) 
= 4.14, p < .O1 (note that the difference in degrees of free- 
dom from earlier reflects the loss of one reproduction ob- 
servation due to camera error). Similarly, absolute errors 
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Figure 2. The triangles used in pathway completion (left panel, also see Figure 1). (The 27 
triangles were created by crossing three lengths of the first leg [2, 4, or 6 m], three lengths of the 
second leg [2, 4, or 61, and three values of the angle between them [60°, 90°, or 120°]. The origin 
of locomotion is indicated by X. The legs over which the subjects were guided are shown by the 
solid lines, and the drop-off points are given by the solid symbols. The right panel shows the 
computer-measured responses of an adventitiously blind subject [advl] performing triangle com- 
pletion. On some trials the full trajectory could not be measured; on these trials, indicated by the 
open symbol at the drop-off point [Turn only], only the turn toward the origin was computed. All 
other trials for which both turn and distance were computed [TurnIDist] are shown by the solid 
symbols.) 

increased with distance, F(4, 136) = 8.50, p < .0001, with 
no effects involving group (errors were 54, 118, 158, 191, 
and 261 cm.) 

Turn reproduction and estimation. Signed turn repro- 
duction again showed an error pattern changing from over- 
to underestimation (over the seven angles of 60", 90°, 
120°, 180°, 240°, 270". and 300°, errors in degrees were 
21, 9, 21, -1, -4, -9, and -30, respectively). An ANOVA 
on group and turn showed only a main effect of turn, F(6, 
198) = 9.40, p < .001. Absolute turn errors showed an in- 
creasing trend over the turn values (errors in degrees were 
24, 16, 29, 18, 33, 35, and 38). The ANOVA on absolute 
errors with group and turn showed only a main effect of 
turn, F(6, 198) = 3.19, p < .01. Both the signed and abso- 
lute error functions were nonmonotonic, showing relatively 
greater accuracy when the turn was a multiple of 90". This 
tendency has been noted by Klatzky, Loomis, Golledge, 
Cicinelli, et al. (1990). 

The signed errors of turn estimation showed underesti- 
mation for all angles, increasingly so over the angular val- 
ues (errors in degrees were -9, -15, -8, -21, -27, -18, 
and -34 over the seven angles). The ANOVA on group and 
angular value showed only a main effect of angle, F(6, 
204) = 2.83, p < .05. Similarly, absolute errors increased 
with angle, F(6, 204) = 8.20, p < .0001 (errors in degrees 
were 24, 20, 28, 25, 45, 42, and 47). 

Results: Complex Locomotion Tasks 

Triangle completion. Distance was measured the same 
way as in the simple locomotion tasks (cumulative path 

length). To measure the turn back toward the origin, the 
data within 50 cm of the turn point (terminus of the second 
leg) were discarded and the next 2 m of the subject's tra- 
jectory were fit by regression to obtain heading in the 
work space. The turn was calculated as the difference be- 
tween this heading and the heading of the second leg. 

The left panel of Figure 2 shows the 27 outbound path- 
ways formed by the factorial combination of three lengths 
for each of two legs and three turn values and their layout 
in the work space. The right panel of Figure 2 and Figures 
3, 4, and 5 show the corresponding trajectories for all 37 
subjeck2 Some of the trajectories could not be properly 
measured over their entirety because the subject walked 
out of the field of view of either camera or, rarely, because 
of problems with equipment. These trajectories were not 
used for distance data but contributed to turn data. The 
valid trajectories contributed to four measures: signed error 
in the subject's walked distance, signed error in the sub- 
ject's turn toward the origin, and the corresponding abso- 
lute errors. The mean values for these measures are shown 
by group in Table 2. 

Figure 6 plots mean turn and mean distance as functions 
of the respective correct values by group. (Data are pooled 
over valid trajectories for each configuration.) Clearly, sub- 
jects' responses indicate sensitivity to the manipulated pa- 
rameters of the pathways; the mean responses are well f i t  
by linear functions of the correct values (? for turn = .X5. 

Readers interested in obtaining computer files with the rn t iw 
set of trajectories for triangle completion should contact Jack hl 
Loomis. 

[Loomis, Klatzky, 1993]



Dead-reckoning/path integration

animals including humans use path integration 

blind from birth

80 LOOMIS ET AL. 

.83, and .93 for congenitally blind, adventitiously blind, 
and sighted; r;! for distance = .83, .88, and .92). The over- 
all trend, however, is for compression of the range of re- 
sponses relative to the correct values. It is also notable that 
the functions for the three groups were quite similar. Dif- 
ferences among groups were analyzed by computing a lin- 
ear regression for each subject and then comparing the 
slopes and r;! (degree of linear fit) for turn and distance. 
None of these differences was significant. 

Additional regression analyses focused on subjects' sen- 
sitivity to the parameters of the triangles-length of first leg 
(A), length of second leg (B), and angle between legs (a). 
Multiple linear regression was used to predict subjects' 
turn and distance responses. In actuality, the correct re- 
sponse was not a strictly linear function of A, B, and a ,  
but a linear model predicted high percentages of the vari- 
ances in correct turn and distance (90% and 94%, respec- 
tively). This can be seen in the regression parameters for 
an "ideal" subject, who responded correctly each time, in 
rows labeled Ideal in Table 3. 

Group means on the 27 configurations were modeled 
with linear regression, providing standardized weights for 

Figure 3. The responses of the 12 congenitally blind (con) sub- 
jects in the triangle completion task. (The origin of motion is 
indicated by X. The legs over which the subjects were guided are 
shown by the solid lines, and the drop-off points are given by the 
solid symbols.) 

Figure 4. The responses of the 12 adventitiously blind (adv) 
subjects in the triangle completion task. (The origin of motion is 
indicated by X. The legs over which the subjects were guided are 
shown by the solid lines, and the drop-off points are given by the 
solid symbols.) 

A, B, and a that can be compared with the "ideal" subject. 
Note that this analysis is insensitive to constant additive 
error (e.g., always turning 20" too much or walking 1 m 
too little) or errors of scale (e.g., overturning by a constant 
proportion of correct turn). Table 3 presents the regression 
weights by group. All weights were significantly different 
from zero at the .O1 level and were signed correctly (i.e., 
in the same way as the ideal subject). Hence, the average 
subject in each group was sensihve to the manipulated 
variables of the pathway. 

Retrace-completion task: Completion. Distance and 
turn responses for completion trials in the completion or 
retrace task were measured the same way they were in tri- 
angle completion. We have previously reported completion 
performance on the four paths used here by a sighted 
blindfolded population (Klatzky, Loomis, Golledge, 
Cicinelli, et al., 1990). The particular configurations were 
(except for a change of scale) a subset of the original set, 
chosen because they produced relatively high or low error. 
The measured variables were signed and absolute error in 
the turn toward the origin and the walked distance. Errors 
generally decreased with repetition, but it is not clear how 
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Figure 4. The responses of the 12 adventitiously blind (adv) 
subjects in the triangle completion task. (The origin of motion is 
indicated by X. The legs over which the subjects were guided are 
shown by the solid lines, and the drop-off points are given by the 
solid symbols.) 

A, B, and a that can be compared with the "ideal" subject. 
Note that this analysis is insensitive to constant additive 
error (e.g., always turning 20" too much or walking 1 m 
too little) or errors of scale (e.g., overturning by a constant 
proportion of correct turn). Table 3 presents the regression 
weights by group. All weights were significantly different 
from zero at the .O1 level and were signed correctly (i.e., 
in the same way as the ideal subject). Hence, the average 
subject in each group was sensihve to the manipulated 
variables of the pathway. 

Retrace-completion task: Completion. Distance and 
turn responses for completion trials in the completion or 
retrace task were measured the same way they were in tri- 
angle completion. We have previously reported completion 
performance on the four paths used here by a sighted 
blindfolded population (Klatzky, Loomis, Golledge, 
Cicinelli, et al., 1990). The particular configurations were 
(except for a change of scale) a subset of the original set, 
chosen because they produced relatively high or low error. 
The measured variables were signed and absolute error in 
the turn toward the origin and the walked distance. Errors 
generally decreased with repetition, but it is not clear how 
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Figure 5. The responses of the 12 sighted (sig) subjects in the 
triangle completion task. (The origin of motion is indicated by X. 
The legs over which the subjects were guided are shown by the 
solid lines, and the drop-off points are given by the solid symbols.) 

to interpret this result. Either subjects were learning the 
configuration and improving their return responses or they 
were simply using feedback about the correct turn and dis- 
tance to improve the accuracy of the response without 
even attending to the configuration. In light of this ambi- 
guity of the later trials in the completion task, our analysis 
focuses only on the first trial; mean signed and absolute er- 
ror for turn and distance are presented for this condition by 
group and configuration in Table 4. 

With one exception, ANOVAs on the error measures, 
with group, repetition, and configuration, showed no ef- 
fects involving group. The exception was a significant 
Group X Configuration effect on signed distance error, 
F(6, 90) = 2.76, p < .025. (The means for this interaction 

Table 2 
Errors on the Triangle-Completion Task by Group 

Turn error (degrees) Distance error (cm) 
Error Con Adv Sighted Con Adv Sighted 

Absol~te 24 22 24 137 107 168 
Signed -16 3 -4 -83 -61 -161 

Note. Con = congenitally blind; Adv = adventitiously blind. 

show the same trends as the first-trial data in Table 4 and 
are not reported separately). Generally, all groups tended 
to undershoot in distance for Configurations 5, 9, and 11 
and to overshoot for Configuration 7. The same general 
pattern was found for these configurations in Klatzky, Loo- 
mis, Golledge, Cicinelli, et al. (1990), suggesting that the 
configurations produce systematic distortions that are 
shared among the groups. The amount of over- and under- 
shooting varied across groups, however, yielding the inter- 
action. In particular, the sighted appeared to be more con- 
sistently affected by the nature of the configuration than 
either of the blind groups. The F values for the other sig- 
nificant effects on completion performance are 'shown in 
Table 5. 

Retrace-completion task: Retrace. Figure 7 gives a 
representative sample of retrace performance by individual 
subjects. We analyzed each subject's performance on the 
entire trajectory by computing the distance of the subject's 
endpoint from the correct location. An ANOVA on group, 
repetition, and configuration showed that error decreased 
slightly with feedback over repetitions, F(2, 68) = 3.58, p 
< .05. The errors were 270, 247, and 243 cm for Repeti- 
tions 1, 2, and 3, respectively. There was also a main effect 
of configuration. Errors were 182 cm and 221 cm on the 
two-segment pathways (5 and 7), 249 cm on the open 
three-segment configuration (9) and 363 on the three- 
segment configuration with a crossover (1 1). There was no 
effect of visual status ( F  < 1). Notice, however, that one 
of the congenitally blind subjects (Con 1) turned in the 
wrong direction three out of six times after retracing the 
first leg (in Configurations 5 and 9). 

We also analyzed retrace performance for each segment. 
One of the experimenters estimated the pivot point for 
each turn in the plotted trajectory. For each segment, error 
was determined as the distance between the subject's pivot 
point (or on the last leg, the subject's stopping point) and 
the correct endpoint of that segment. On the first segment, 
subjects had merely to turn 180' and repeat the distance 
they had just walked. An ANOVA performed on the 
Segment-1 data with configuration, group, and repetition 
showed that even on the first leg, there was an effect of 
configuration (mean errors for Pathways 5, 7, 9, and 11 
were 84, 108, 85, and 168 cm, respectively). No other ef- 
fects were significant, including group ( F  < 1). 

The final analysis examined the effect of segment num- 
ber for the three-segment pathways. It also included group, 
configuration, and repetition as factors. There were effects 
of configuration, F(l ,  34) = 16.73, p < .001, segment 
number, F(2, 68) = 109.22, p < .01, and interactions be- 
tween segment and configuration, F(2, 68) = 9.19, p < 
.001, and between segment and repetition, F(4, 136) = 
3.37, p < .05. Again, there was no group effect ( F  < 1). 
The pattern of these effects is shown in Table 6. Subjects 
drifted further and further from the correct pathway with 
each leg, particularly for the more complex pathway. The 
effect of repetition with feedback was greater for the last 
leg of the pathway than for earlier legs. This is likely to re- 
flect greater attention by the experimenters to the end of 
the trajectory, which would be reflected in their feedback. 

blind from accident seeing



Landmark recognition

landmarks are not necessarily objects… 

empirical evidence that views serve to estimate 
ego-position and pose

a city,9,10,13 suggesting that segmentation into subspaces can
be induced in a top-down manner, based on spatial or concep-
tual organization.

In the current experiment, we aimed to identify the neural
mechanisms behind such top-down spatial segmentation, with
the specific goal of determining whether behavioral segmenta-
tion effects are accompanied by neural effects of schematiza-
tion, grouping, or remapping. We trained participants to locate
16 objects in a segmented environment for which visibility,
spatial relations, and the probability of transition between ob-
jects were matched within and between segments. We then
used fMRI to identify object-specific activity patterns, and we
investigated how these neural representations were affected
by the spatial segmentation. To anticipate, we observed behav-
ioral and neural effects of segmentation; the neural effects were
observed in the hippocampus and scene-selective regions of the
visual system, and they manifested primarily as schematization.

RESULTS

Division of the environment into subspaces induces
mental segmentation
To encourage the formation of segmented spatial representa-
tions, we familiarized participants with a virtual courtyard that
was divided into two segments by a river crossable at two
bridges (Figure 1). The river blocked movement (except at the
bridges), but it did not block visibility. Participants learned the lo-
cations of 16 objects within the courtyard through a multi-stage
learning procedure in which they were required to navigate to
named objects in succession. The order of these navigational
targets was randomized so that that participants’ navigational
paths were not related to the proximity of the objects or the divi-
sion of the environment into subspaces. Initially, all objects were
visible, but as training progressed, increasing numbers of the ob-
jects were obscured to induce reliance on spatial memory (STAR
Methods). By the end of the learning procedure, all of the partic-
ipants included in the experiment could navigate to all object lo-
cations without error, even when all the objects were obscured

(Figure S1A). The learning stage took 28 min on average (range:
16–51 min).
Behavioral assessments confirmed that participants formed

segmented spatial representations that reflected the division of
the courtyard into two subspaces (Figure 2). When participants
were asked to estimate distances between objects (distance
estimation task), their responses were significantly more accu-
rate for object pairs on same side of the river compared to object
pairs on opposite sides of the river (average correlation between
real and estimated distances: r = 0.72 within segment; r = 0.60
between segment; difference: Z = 2.32, p = 0.02; effect size r =
0.47; Figure 2A, left). Similarly, when participants were asked
to make three-way distance comparisons between objects (dis-
tance comparison task; e.g., ‘‘which object is closer to object A:
object B or object C?’’), theymademore correct responseswhen
all three objects were on the same side of the river compared to
when the anchor and target objects were on opposite sides
(average accuracy = 86% within segment; 77% between
segment; difference: Z = 2.87, p = 0.004; effect size r = 0.59; Fig-
ure 2A, right). For both distance tasks, trials were constructed so
that average Euclidean distance was equal for within-segment
and between-segment conditions. Results were similar when
data were analyzed using shortest path distance instead of
Euclidean distance as the ground truth (within-segment versus
between-segments accuracy: Z = 3.23, p = 0.001, effect size
r = 0.66 for distance estimations; Z = 2.93, p = 0.003, effect
size r = 0.60 for distance comparisons; note that Euclidean
and path distances were highly correlated to each other when
considering either all distances [r = 0.92] or only the between-
segment distances [r = 0.86]).
Further analyses of the data from the distance estimation task

revealed that participants estimated distances as being larger for
between-segment compared to within-segment object pairs,
even though the actual distances were matched between these
conditions (Z = 2.01; p = 0.047; effect size r = 0.41; Figure 2B).
Analysis of reaction times did not reveal any segment-related
priming in the distance-estimation task, which was not surprising
given the unspeeded nature of the required response. In the

Figure 1. Experimental design and proced-
ure
(A) Participants were familiarized with a virtual

environment consisting of a square courtyard

surrounded by buildings. A river separated the

environment into two segments and two bridges

allowed crossing from one segment to the other.

Sixteen objects were located in the environment,

with their locations balanced such that distances

and directions between objects were similar within

each segment and between segments (e.g., ob-

jects 1 and 5, 5 and 9, 9 and 13, and 13 and 1 are

equally distant from each other).

(B) Experimental tasks.

(C) Experimental procedure. Note that the object

viewing and judgment of relative direction tasks

were performed in the fMRI scanner, while the

free-recall, distance-estimation, and distance-

comparison tasks were performed outside the

scanner.

For full details on the tasks and procedure, see

STAR Methods.
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Maps

when can we say does an animal use a map? 

rather than use stimulus-response chaining

=> when it can take short-cuts

[Poucet, 1993]

Glossary
Cognitive graph: a representation of
space in terms of nodes (locations)
connected by links (path segments). A
cognitive graph can be topological
(representing only whether locations are
connected to each other or not), or
labeled (representing local metric
information such as distances and
directions of each link, or the angles that
links form at a node).
Entorhinal cortex (ERC): a brain
region found in both rodents and
humans that serves as a major input/
output structure for the hippocampus.
ERC contains both grid cells and head-
direction cells.
Euclidean space: a continuous space
defined by reference axes (usually two or
three). Locations in a Euclidean space
can be specified by coordinates, and
relationships between locations can be
expressed in terms of distances and
angles.
Grid cells: neurons that represent
space in a distributed manner by firing in
a regular array of locations that tile the
environment in a hexagonal lattice.
Head-direction cells: neurons that fire
as a function of the direction that the
animal is facing, independently of its
location, similar to the behavior of a
compass.
Hexadirectional modulation: a
phenomenon where brain activity is
modulated by the subject’s current
direction of movement, with sixfold
symmetry – that is, firing is maximal for
headings with angular spacing of 60°.
This is believed to be a marker for grid
cells, whose fields exhibit a similar sixfold
organization.
Local visual scene (or vista space): a
space that can be perceived from a
single point without the need to
navigate. Sometimes contrasted with
environmental spaces, which cannot
be perceived from a single point of
view.
Path integration: a strategy in which a
navigator keeps track of the distances
and directions they have traveled so as
to compute a straight-line vector to the
starting point. Path integration is
believed to be crucial for learning
Euclidean coordinates for locations in
the environment, but it can become
inefficient in large environments owing to
accumulated errors.
Place cells: neurons that represent
space in a localized manner by firing
when the animal is in a specific location.

Box 1. Historical Conceptions of Cognitive Maps
The concept of a cognitive map dates back to Tolman [2], who presented it as an alternative to behaviorist approaches to
psychology. Tolman suggested that animals form representations of environments that are more than an interlinked series
of associations and whose learning does not depend on immediate reward. The idea that humans and animals have internal
spatial representations is now widely accepted, but there has been less consensus about the nature of 'cognitive maps' –
their degree of accuracy, the inputs required to form them, and how they integrate separately experienced environments.

In 1978, O’Keefe and Nadel proposed that cognitive maps are Euclidean, and this has become the dominant model for neu-
roscientists [7]. A precise definition comes from Langille and Gallistel [178]: 'A map is a set of vectors in a 2- or 3-dimensional
vector space, on which navigation-relevant vector functions are defined.' Under this definition, the key feature of a map is that it
establishes coordinates for each point in space, thus allowing a navigator to associate non-location information (e.g., terrain
characteristics, visual snapshots, reward values) with any location, and to set a direct course between different locations [1].
O’Keefe and Nadel contrasted the flexibility of the Euclidean 'locale' systemwith the inflexibility of the action-based 'taxon' sys-
tem, which they postulated mediated a habit-like following of routes.

However, in parallel to the Euclidean map hypothesis, other suggestions for very different types of cognitive maps were put
forth, some of which have graph-like aspects. Kuipers suggested that, in addition to Euclidean cognitive maps, people store
representations that are based on topological knowledge – connectivity between locations through routes and hierarchical or-
ganization of locations into regions [42,43]. Subsequent authors have developed other models of graph-like spatial represen-
tations [19,26,36,38,41,45,47,179–182], with additional elements such as a skeleton of major routes on which the graph is
constructed [44], labels at nodes and edges indicating directions and distances [8,9,30], and node-specific reference frames
[37,39]. It remains debated whether spatial knowledge is Euclidean, graph-based, or a combination of both. In this article
we use the term cognitive map to refer to Euclidean cognitive maps, while referring to graph-like structures as cognitive graphs.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 1. Map-Based versus Graph-Based Representations. In the spatial domain (top row), knowledge can be
purely map-based, and locations are coded in terms of Euclidean coordinates (e.g., latitude and longitude), or purely
graph-based, where locations are nodes and paths between locations are links. It is also possible for map- and graph-
based representations to exist simultaneously, allowing us to switch flexibly between the two. In non-spatial domains (bottom
row), knowledge is map-based when information is encoded in terms of continuous dimensions and graph-based when it is
encoded in terms of distinct links between items. For example, the individuals in a social group might be represented in terms
of their personality characteristics (map-based) or in terms of the social connections within the group (graph-based). It is
currently unclear whether a flexible combination of graph- and map-like representations exists in non-spatial domains.

Trends in Cognitive Sciences

38 Trends in Cognitive Sciences, January 2021, Vol. 25, No. 1

[Peer et al, 2020]



SLAM

Simultaneous Localization and Mapping

2

require a joint state composed of the vehicle pose and every
landmark position, to be updated following each landmark
observation. In turn, this would require the estimator to
employ a huge state vector (of order the number of land-
marks maintained in the map) with computation scaling as
the square of the number of landmarks.

Crucially, this work did not look at the convergence prop-
erties of the map or its steady-state behavior. Indeed, it
was widely assumed at the time that the estimated map
errors would not converge and would instead exhibit a ran-
dom walk behavior with unbounded error growth. Thus,
given the computational complexity of the mapping prob-
lem and without knowledge of the convergence behavior of
the map, researchers instead focused on a series of approxi-
mations to the consistent mapping problem solution which
assumed or even forced the correlations between landmarks
to be minimized or eliminated so reducing the full filter to
a series of decoupled landmark to vehicle filters ([28], [38]
for example). Also for these reasons, theoretical work on
the combined localisation and mapping problem came to a
temporary halt, with work often focused on either mapping
or localisation as separate problems.

The conceptual break-through came with the realisation
that the combined mapping and localisation problem, once
formulated as a single estimation problem, was actually
convergent. Most importantly, it was recognised that the
correlations between landmarks, that most researchers had
tried to minimize, were actually the critical part of the
problem and that, on the contrary, the more these corre-
lations grew, the better the solution. The structure of the
SLAM problem, the convergence result and the coining of
the acronym ‘SLAM’ was first presented in a mobile robot-
ics survey paper presented at the 1995 International Sym-
posium on Robotics Research [16]. The essential theory on
convergence and many of the initial results were developed
by Csorba [11], [10]. Several groups already working on
mapping and localisation, notably at MIT [29], Zaragoza
[5], [4], the ACFR at Sydney [20], [45] and others [7], [13],
began working in earnest on SLAM1 applications in indoor,
outdoor and sub-sea environments.

At this time, work focused on improving computational
e±ciency and addressing issues in data association or ‘loop
closure’. The 1999 International Symposium on Robot-
ics Research (ISRR’99) [23] was an important meeting
point where the first SLAM session was held and where
a degree of convergence between the Kalman-filter based
SLAM methods and the probabilistic localisation and map-
ping methods introduced by Thrun [42] was achieved. The
2000 IEEE ICRA Workshop on SLAM attracted fifteen re-
searchers and focused on issues such as algorithmic com-
plexity, data association and implementation challenges.
The following SLAM workshop at the 2002 ICRA attracted
150 researchers with a broad range of interests and appli-
cations. The 2002 SLAM summer school hosted by Hen-
rik Christiansen at KTH in Stockholm attracted all the

1Also called Concurrent Mapping and Localisation (CML) at this
time.

key researchers together with some 50 PhD students from
around the world and was a tremendous success in build-
ing the field. Interest in SLAM has grown exponentially
in recent years, and workshops continue to be held at both
ICRA and IROS. The SLAM summer school ran in 2004
in Tolouse and will run at Oxford in 2006.

III. Formulation and Structure of

the SLAM problem

SLAM is a process by which a mobile robot can build
a map of an environment and at the same time use this
map to deduce it’s location. In SLAM both the trajectory
of the platform and the location of all landmarks are esti-
mated on-line without the need for any a priori knowledge
of location.

A. Preliminaries

x k 

x k+2 
m j 

x k x k-1 

x k+1 

m i 

z k-1,i 

z k,j 

u k 

u k+1 

u k+2 

Robot Landmark 

Estimated 

True 

Fig. 1. The essential SLAM problem. A simultaneous estimate of

both robot and landmark locations is required. The true locations are

never known or measured directly. Observations are made between

true robot and landmark locations. See text for details.

Consider a mobile robot moving through an environment
taking relative observations of a number of unknown land-
marks using a sensor located on the robot as shown in
Figure 1. At a time instant k, the following quantities are
defined:
• xk: The state vector describing the location and orien-
tation of the vehicle.
• uk: The control vector, applied at time k°1 to drive the
vehicle to a state xk at time k.
• mi: A vector describing the location of the ith landmark
whose true location is assumed time invariant.
• zik: An observation taken from the vehicle of the location
of the ith landmark at time k. When there are multiple
landmark observations at any one time or when the specific
landmark is not relevant to the discussion, the observation
will be written simply as zk.

[Durrant-Whyte, Baily, 2006]



SLAM

problem of learning/optimizing path integration… 
and using this to associated landmark information 
with locations

7

diÆers from Equation 2 because R-B requires dependency
on the map be marginalised away.

P (zk | X0:k,Z0:k°1)

=
Z

P (zk | xk,m)P (m | X0:k°1,Z0:k°1)dm (15)

3. If necessary,5 perform resampling. Resampling is ac-
complished by selecting particles, with replacement, from
the set {X(i)

0:k}N
i , including their associated maps, with

probability of selection proportional to w(i)
k . Selected par-

ticles are given uniform weight, w(i)
k = 1

N .
4. For each particle, perform an EKF update on the ob-
served landmarks as a simple mapping operation with
known vehicle pose.

The two versions of FastSLAM in the literature, Fast-
SLAM 1.0 [32] and FastSLAM 2.0 [33], diÆer only in terms
of the form of their proposal distribution (step 1) and, con-
sequently in their importance weight (step 2). FastSLAM
2.0 is by far the more e±cient solution.

For FastSLAM 1.0, the proposal distribution is the mo-
tion model

x
(i)
k ª P (xk | x(i)

k°1,uk) (16)

Therefore, from Equation 14, the samples are weighted ac-
cording to the marginalised observation model.

w(i)
k = w(i)

k°1P (zk | X(i)
0:k,Z0:k°1) (17)

For FastSLAM 2.0, the proposal distribution includes the
current observation

x
(i)
k ª P (xk | X(i)

0:k°1,Z0:k,uk) (18)

where

P (xk | X(i)
0:k°1,Z0:k,uk)

=
1
C

P (zk | xk,X(i)
0:k°1,Z0:k°1)P (xk | x(i)

k°1,uk)(19)

and C is a normalising constant. The importance weight
according to Equation 14 is w(i)

k = w(i)
k°1C. The advantage

of FastSLAM 2.0 is that its proposal distribution is locally
optimal [15]. That is, for each particle, it gives the small-
est possible variance in importance weight w(i)

k conditioned
upon the available information, X

(i)
0:k°1, Z0:k and U0:k.

Statistically, FastSLAM (1.0 and 2.0) suÆers degenera-
tion due to its inability to forget the past. Marginalis-
ing the map in Equation 15 introduces dependence on the
pose and measurement history, and so, when resampling
depletes this history, statistical accuracy is lost [2]. Never-
theless, empirical results of FastSLAM 2.0 in real outdoor
environments [33] show that the algorithm is capable of
generating an accurate map in practice.

5When best to instigate resampling is an open problem. Some im-
plementations resample every time-step, others after a fixed number
of time-steps, and others once the weight variance exceeds a thresh-
old.

V. Implementation of SLAM

Practical realisations of probabilistic SLAM have become
increasingly impressive in recent years, covering larger ar-
eas in more challenging environments. Here we discuss two
representative implementations and mention other notable
applications.

Fig. 6. Real-time SLAM visualisation by Newman et al. [37].

The “explore and return” experiment by Newman et al.
[37] was a moderate-scale indoor implementation that val-
idated the non-divergence properties of EKF-SLAM by re-
turning to a precisely marked starting point. The exper-
iment is remarkable because its return trip was fully au-
tonomous. The robot was manually driven during the ex-
ploration phase, although without visual contact by the
operator, who relied solely on a real-time rendering of the
robot’s map (see Figure 6). For the return trip, the robot
plans a path and returns without human intervention.
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Fig. 7. Large-scale outdoor SLAM by Guivant and Nebot [21].

Guivant and Nebot [21] pioneered the application of
SLAM in very large outdoor environments (see Figure 7).

problem of 
loop closure



(Neural) dynamics of navigation

dynamics for ego-position estimation

dynamical approach to learning the map: network of 
locations (home bases) at which the agent knows 
where it is relative to others

dynamics of path planning



Neural and 
behavioral 

architecture



Visual place navigation

a visual surround (unsegmented) acquired in 
clusters around particular locations (home bases)

views are stored together with current position 
estimate (translation/rotation)



Evidence for home bases
animals in given terrain build home bases by 
rearing in locations where they spend most of 
their time
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Fig. 7. The spatial distribution of 4 behaviors in 4 represen- 
tative rats of the one base group. Rectangles represent the 
platform's surface. Marks on platform represent centers of 
predefined places (Fig. 1). Height of bars represents the 
relative proportion of time or relative frequency of respective 
behaviors. Data are presented for 5-7 places with highest 
values. As shown, in all 4 rats the high values converge to 

only one place. 

(P < 0.001). However, the difference between the 
first and the second place is smaller in the two- 
base group compared to the one-base group 
(P < 0.001). Furthermore, the difference between 
the second and third place is larger than in the 
one-base group (P < 0.001). It may be concluded 
that in the two-base group there is a second place 
which is lower than the In'st, but markedly higher 
than all the other places in terms of the time of 
staying in place. This place may thus be defined 
as a second base. 

A comparison of the incidences of grooming 
and rearing in the first and second base of the 
two-base group (A and B in right column of Fig. 

-W.I 
/ l ~ 1  . .~ 

 9 TIME 
JSROOMING 
EREARING 'A' 

e o d ~... m.i 
Fig. 8. The spatial distribution of 4 behaviors in 4 represen- 
tative rats of the two-base group. For explanation of graphs 
see legend to Fig. 7. Asterisks above bars indicate base 
locations. Adjacent asterisks indicate a base established on 

the boundary between adjacent places. 

6) revealed no difference. In contrast, the dif- 
ference established fo r the incidences of grooming 
and rearing in A and B of the one-base group was 
significant. We could not distinguish, however, 
between the one- and two-base groups, in regard 
to the number of visits paid to A and B. 

The degree of convergence of behavior to the 
first and the second base, is illustrated in the 4 
examples presented in Fig. 8. 

IV. Other features of behavior in relation to home 
base 

Crouching and pivoting around forelegs. During 
long periods of staying .in place, rats typically 
crouch. Since long periods of staying in place 
define base location, crouching was found to be 
confined to base locations. Crouch!ng is often 
interrupted by a peculiar type of turning in'place, 
which consists of standing up, pivotipg for 180 ~ 
or more around the relatively stationary forelegs, 
and lying down again. In a few cases, this type of 
pivoting was observed without being preceded or 

B. 

201 

A= 
7 7' 0 O' 1 7 7' 0 O' 1 

6' 7~ O" 1 ~ 1' 6' 7" O" 1" 1' 

_ . _  6 6 2 6 6" C 2" 2 

5' ~" 4" " . z  s ' ] 5"  4" a" 2' 

s / 4  ' ~ a ' \  sl  4' 4 a' 

Fig. I. Mapping of platform 160 • 160 cm). A: method of 
mapping (for explanation, see text); B: partitioning of plat- 
form to 25 places. Only signs of places were actually marked 
on the glass platform, to facilitate the assessment of rat's 
location. Light lines are drawn only in this figure, to indicate 
the subdivision to 25 areas. The areas of places were not 
equal. Those containing a comer were one-fourth as large, 
and those adjoining an edge were one-half as large as other 
places. When a rat walks or stops in proximity of an edge, it 
is characteristically attracted to the edge, staying quite close 
to it. The smaller size of rectangles along the edge is meant 

to take account of this regularity. 

motion, and the occurrence of grooming, rearing, 
and a particular type of pivoting around the 
forelegs, were recorded for each of the places. 
Groomhlg included either face grooming alone, or 
both face and body grooming. Rearing consisted 
of a vertical movement of the whole trunk 
including release of  foreleg contact with the sub- 
strate. Pivoting around forelegs was comprised of 
whole body rotation (turning) around the vertical 
absolute axis located in the relatively stationary 
forelegs. Data collected consisted of single 
sessions, 1 hour duration each, of  25 rats (17 
rubles and 8 females). 

Statistics. Statistical comparisons were made 
using t-tests for independent or dependent 
samples, as appropriate. Indicated P-values are 
2-tailed probabilities; accepted level of signifi- 
cance is P < 0.05. 

from edge. This mapping procedure is consistent 
with the Eshkol-Wachman method of mapping of 
topographical positionsS; as such it allows using 
a somewhat similar mapping procedure for the 
description of both body movements and the spa- 
tial location of the animal. 

Behavioral analysis. Time-coded videotapes 
were displayed on the screen at regular speed, and 
the places where the rat stopped were coded using 
custom programs that allowed the computer 
keyboard to serve as an event recorder. For each 
rat, the whole one hour session was recorded. 
Whenever the rat stopped, the observer pressed a 
key representing the place of stopping. The key 
pressed designated the place containing most of  
the rat's body at the time of stopping. The same 
key was pressed again at the time at which the rat 
left that place. Since time in the computer was 
synchronized with time on video record, a second 
program could calculate the sequence of stops, 
their duration, frequencies of stops in particular 
places, and cumulative durations of staying in 
each place. Stopping was recorded whenever there 
was a cessation of forward progression. In the 
present study, the term 'stop at a particular place' 
is used interchangeably with the term 'visit'. After 
recording the sequence of places in which a rat 
stopped, videotapes were replayed in slow 

RESULTS 

L Convergence of staying in place to one or two 
places in the environment 

Upon being placed on the platform, rats alter- 
nate between progression and stopping2!This is 
shown for one exemplary rat in Fig. 2. Intervals 
of  stopping are represented by black bars, and 
intervals of  walking from one place to the next are 
represented by the empty space between the bars. 
In this example, during the course of an hour, the 
rat stopped briefly in many places. In a few places, 
however, the periods of stopping were sometimes 
brief and sometimes very long. 

According to the record, after 30 rain, the rat 
changed the place in which it stayed for extended 
intervals. During the last 20 rain of the session, 
the rat mostly alternated between two adjacent 
places (Fig. 2). Examination of the videotapes re- 
vealed that in this particular case, the alternation 
was an artifact of  our recording procedure: the rat 
settled on the boundary between two predefined 
places, and, because of  small shifts in its location 
of stopping, successive visits to the same physical 
location were recorded as visits to two separate 
(but adjacent) places. Since the rat stayed on the 
boundary, pivoting in place was also occasionally 
recorded as a shift to an adjacent place. This 
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two preferred places where they stayed for 
extended periods. The vast majority of  stops 
which exceeded 20 s occurred in these places. 

In the following sections we will first show that 
in rats there is one place that stands out from all 
the other places in the environment with respect 
to the cumulative time of staying in place, the 
frequency of grooming .and rearing, and the num- 
ber of  visits to that place. We shall then examine 
the generality of  this phenomenon by focusing on 
the behavior of  each individual. Such examination 
reveals that some rats have only one preferred 

.place, and some have two. Finally, we will show 
that progression away from base differs markedly 
from progi-ession to base. 

4 0  

| 

# 
t 

I 

Fig. 2. A full chronological record of the places and du- 
rations of stopping, in the behavior of one rat in the course 
of one hour. The horizontal axis represents time; all the 
places on the platform are represented linearly on the vertical 
axis. The upper portion of each graph represents the places 
along the platform's edge; the lower portion represents the 
places located away from the edge. Heavy horizontal bar- 
lines represent staying in place. The empty horizontal spaces 
between bars represent movement from one place to the 
next. Because of space limitation, not all places are repre- 
sented by numerals on the vertical axis: numerals represent 
places at 45 ~ angular intervals; spaces between two succes- 
sive numbers represent places between the previously labeled 
places (0',1',2', etc., in Fig. 1); places in the middle of the 

platform (0",1",2", etc.) are not printed on the vertical 
axis. 

artifact of our recording method was taken into 
account in the following phase of data analysis. 

The phenomenon of stopping for brief intervals 
in many places and for both brief and long inter- 
vals in few, selected places, is common to all rats. 
Fig. 3 presents 24 individual records of  the places 
and durations of  stopping in the course of one 
hour. For clarity of  exposition, intervals of staying 
in place shorter than 20 s were eliminated from 
the record. As illustrated, most rats had one or 

H. Convergence of behavior to home base 
The duration and frequency of  several be- 

haviors are highest at the home base. More 
strikingly, these values represent another order of 
magnitude compared to the values at other lo- 
cations. To show this statistically, two averages 
were compared (using paired t-test): the first 
average was based on values from all the 25 places 
on the platform, the second average was cal- 
culated for 24 places, without the homebase  data. 
A significant difference between the ~ two averages 
implies that the home base data markedly biases 
the overall mean, and thus considerably differs 
from values at other places. 

Cumulative time of staying in place 
Home base location was defined as the place 

where the rat spent cumulatively the largest 
amount of  time (Fig. 3). A paired t-test of  the two 
averages obtained for each rat revealed that in- 
clusion of  home base data (highest value ofcumu- 
lative time) in the calculation, biases the average 
significantly (Table I). Application of  the same 
test to the second place does not yield a significant 
difference (Table I). Based on this result, it may 
be concluded that the place in which the rat stayed 
longest, also differs markedly from other places on 
the platform in terms of the time spent in it. 

Grooming 
In 22 out of  25 rats, the place in which the rat 

stayed for the longest time, and which was defined 

[Eilam, Golani, 1989]



Visual place navigation

Each view in home base is matched to current 
view…. with all possible rotations actively 
generated from memorized view



Visual place navigation

Correlation function 
across rotation angle 
peaks sharply at true 
angular orientation of 
agent, even if translation 
is not precise… 

so that estimation of 
orientation is possible 
while agent is in receptive 
field of place cell 



Visual place 
navigation

Correlation with 
actively shifted 
memory views 
decays spatially in 
way that reflects 
how distal the 
view is…. place 
field.. 



Visual place navigation

The level of correlation across multiple views within 
a home base generates a place view representation 
of translation => position estimate 



Neural and 
behavioral 

architecture



Integration by an attractor dynamics

every sensory estimate 
contributes a “force-let” 
to a dynamical system 
whose attractor is the 
estimate of ego-position 
… 

for vision: space to rate 
code… removes the 
problem of normalization 



Recalibration 
from instability

with visual match, a 
strong attractor 
force-let induces 
instability in which 
the estimate gets 
reset to the visually 
specified estimate

which resets the 
dead-reckoned 
estimate as well 



Recalibration 
from instability

with visual match, a 
strong attractor 
force-let induces 
instability in which 
the estimate gets 
reset to the visually 
specified estimate

which resets the 
dead-reckoned 
estimate as well 



Neural and 
behavioral 

architecture



Integrating it all: dynamics all the 
way through 



a reset event



Further development: 

complex behavioral organization 

robotic implementation 



Autonomous behavioral organization

neural dynamics organizes sequence of 
behaviors… 
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Autonomous behavioral organization

neural dynamics organizes sequence of behaviors… 
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How neurally realistic is this?



Neural mechanisms of navigation

neural representation of path integration
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Box 1 | Path integration in mammals and some neurophysiological correlates

Darwin recognized that most animals can use self-motion cues to keep track 
of their location relative to a ‘home base’128, but it was not until recently that 
firm experimental evidence for such a path integration process in mammals 
appeared4, and it became clear that the brain can not only calculate a homing 
vector to a fixed location in space, but can also maintain a map-like 
representation of space using only an initial reference and self-motion 
information (for reviews, see REFS 9,12). Making use of the strong motivation 
of female rodents to retrieve pups that have been displaced from the nest to a 
shallow cup some distance away, it was shown that gerbils can search in 
complete darkness and return in a direct line to the original location of the nest, 
even if the nest has been removed (see panel a). With the cup at the centre of 
the dark arena, rotating either the entire arena while the animal was on the 
cup, or only the cup itself, did not prevent the animal from returning to the 
same location in the (inertial) laboratory reference frame; however, rotation of 
the cup through 37 degrees with a slow acceleration profile (0.24 deg s–2), 
presumably below the animal’s vestibular threshold, resulted in a return 
trajectory error of the same magnitude. In panel a, S1–3 represent vectors 
lengths of segments of the outbound journey, and ϕ1–3 are corresponding 
head directions. Variables x1–3 and y1–3 are the cartesian components of the 
segment vectors which, in principle, could be summed to compute the 
homing vector. ‘Starting location’ refers to the beginning of the homing 
trajectory. Insight into the neural basis for angular path integration came from 
the discovery of head direction cells, the firing rates of which depend on the 
direction the animal’s head is facing (a simulated typical head direction cell 
tuning curve is illustrated in the polar plot in which firing rate is represented by 
the radial coordinate and direction is represented by the angular coordinate; 
see panel b). Directional tuning is relative in the sense that, although all head 
direction cells maintain their directional tunings relative to each other, the 
network is not bound to any absolute directional reference. For example, the 
same cell can have different geocentric directional preferences in different 
enclosures and, in the absence of visual input, head direction cells track head 
angular velocity and fire over a restricted range of relative directions; however, 
the network can accumulate directional error with respect to its original 
setting. Linear path integration is sufficient to update the positional firing of 
hippocampal pyramidal cells (see panel c). On a task in which a rat runs on a 
linear rail from a moveable box to a fixed goal at the end of the track, pyramidal 
cells in area CA1 fire in relation to distance from the box as the animal leaves 
it (over distances of more than several body lengths), before shifting reference 
frames to fire in relation to visual cues (CA1 light) or, in darkness, the end of 
the track (CA1 dark). The figure illustrates the configurations of the start box 
on the track and the journey types, which were presented in random order. 
Panel d shows the correlation matrices of CA1 neuronal ensemble population 
vectors for each location on the full track versus every location on the full 
track (Box 1), and for each location on the shortened tracks, in which the box 
was shifted closer to the fixed goal site (Box 2–Box 5), versus every location on 
the full track. The black lines represent the reference frame of the box; white 
lines represent the laboratory/track reference frame. Panel a modified, with 
permission, from REF. 140   (1980) Springer. Panels c and d reproduced, with 
permission, from REF. 33  (1996) Society for Neuroscience.
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Box 1 | Path integration in mammals and some neurophysiological correlates

Darwin recognized that most animals can use self-motion cues to keep track 
of their location relative to a ‘home base’128, but it was not until recently that 
firm experimental evidence for such a path integration process in mammals 
appeared4, and it became clear that the brain can not only calculate a homing 
vector to a fixed location in space, but can also maintain a map-like 
representation of space using only an initial reference and self-motion 
information (for reviews, see REFS 9,12). Making use of the strong motivation 
of female rodents to retrieve pups that have been displaced from the nest to a 
shallow cup some distance away, it was shown that gerbils can search in 
complete darkness and return in a direct line to the original location of the nest, 
even if the nest has been removed (see panel a). With the cup at the centre of 
the dark arena, rotating either the entire arena while the animal was on the 
cup, or only the cup itself, did not prevent the animal from returning to the 
same location in the (inertial) laboratory reference frame; however, rotation of 
the cup through 37 degrees with a slow acceleration profile (0.24 deg s–2), 
presumably below the animal’s vestibular threshold, resulted in a return 
trajectory error of the same magnitude. In panel a, S1–3 represent vectors 
lengths of segments of the outbound journey, and ϕ1–3 are corresponding 
head directions. Variables x1–3 and y1–3 are the cartesian components of the 
segment vectors which, in principle, could be summed to compute the 
homing vector. ‘Starting location’ refers to the beginning of the homing 
trajectory. Insight into the neural basis for angular path integration came from 
the discovery of head direction cells, the firing rates of which depend on the 
direction the animal’s head is facing (a simulated typical head direction cell 
tuning curve is illustrated in the polar plot in which firing rate is represented by 
the radial coordinate and direction is represented by the angular coordinate; 
see panel b). Directional tuning is relative in the sense that, although all head 
direction cells maintain their directional tunings relative to each other, the 
network is not bound to any absolute directional reference. For example, the 
same cell can have different geocentric directional preferences in different 
enclosures and, in the absence of visual input, head direction cells track head 
angular velocity and fire over a restricted range of relative directions; however, 
the network can accumulate directional error with respect to its original 
setting. Linear path integration is sufficient to update the positional firing of 
hippocampal pyramidal cells (see panel c). On a task in which a rat runs on a 
linear rail from a moveable box to a fixed goal at the end of the track, pyramidal 
cells in area CA1 fire in relation to distance from the box as the animal leaves 
it (over distances of more than several body lengths), before shifting reference 
frames to fire in relation to visual cues (CA1 light) or, in darkness, the end of 
the track (CA1 dark). The figure illustrates the configurations of the start box 
on the track and the journey types, which were presented in random order. 
Panel d shows the correlation matrices of CA1 neuronal ensemble population 
vectors for each location on the full track versus every location on the full 
track (Box 1), and for each location on the shortened tracks, in which the box 
was shifted closer to the fixed goal site (Box 2–Box 5), versus every location on 
the full track. The black lines represent the reference frame of the box; white 
lines represent the laboratory/track reference frame. Panel a modified, with 
permission, from REF. 140   (1980) Springer. Panels c and d reproduced, with 
permission, from REF. 33  (1996) Society for Neuroscience.
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Box 1 | Path integration in mammals and some neurophysiological correlates

Darwin recognized that most animals can use self-motion cues to keep track 
of their location relative to a ‘home base’128, but it was not until recently that 
firm experimental evidence for such a path integration process in mammals 
appeared4, and it became clear that the brain can not only calculate a homing 
vector to a fixed location in space, but can also maintain a map-like 
representation of space using only an initial reference and self-motion 
information (for reviews, see REFS 9,12). Making use of the strong motivation 
of female rodents to retrieve pups that have been displaced from the nest to a 
shallow cup some distance away, it was shown that gerbils can search in 
complete darkness and return in a direct line to the original location of the nest, 
even if the nest has been removed (see panel a). With the cup at the centre of 
the dark arena, rotating either the entire arena while the animal was on the 
cup, or only the cup itself, did not prevent the animal from returning to the 
same location in the (inertial) laboratory reference frame; however, rotation of 
the cup through 37 degrees with a slow acceleration profile (0.24 deg s–2), 
presumably below the animal’s vestibular threshold, resulted in a return 
trajectory error of the same magnitude. In panel a, S1–3 represent vectors 
lengths of segments of the outbound journey, and ϕ1–3 are corresponding 
head directions. Variables x1–3 and y1–3 are the cartesian components of the 
segment vectors which, in principle, could be summed to compute the 
homing vector. ‘Starting location’ refers to the beginning of the homing 
trajectory. Insight into the neural basis for angular path integration came from 
the discovery of head direction cells, the firing rates of which depend on the 
direction the animal’s head is facing (a simulated typical head direction cell 
tuning curve is illustrated in the polar plot in which firing rate is represented by 
the radial coordinate and direction is represented by the angular coordinate; 
see panel b). Directional tuning is relative in the sense that, although all head 
direction cells maintain their directional tunings relative to each other, the 
network is not bound to any absolute directional reference. For example, the 
same cell can have different geocentric directional preferences in different 
enclosures and, in the absence of visual input, head direction cells track head 
angular velocity and fire over a restricted range of relative directions; however, 
the network can accumulate directional error with respect to its original 
setting. Linear path integration is sufficient to update the positional firing of 
hippocampal pyramidal cells (see panel c). On a task in which a rat runs on a 
linear rail from a moveable box to a fixed goal at the end of the track, pyramidal 
cells in area CA1 fire in relation to distance from the box as the animal leaves 
it (over distances of more than several body lengths), before shifting reference 
frames to fire in relation to visual cues (CA1 light) or, in darkness, the end of 
the track (CA1 dark). The figure illustrates the configurations of the start box 
on the track and the journey types, which were presented in random order. 
Panel d shows the correlation matrices of CA1 neuronal ensemble population 
vectors for each location on the full track versus every location on the full 
track (Box 1), and for each location on the shortened tracks, in which the box 
was shifted closer to the fixed goal site (Box 2–Box 5), versus every location on 
the full track. The black lines represent the reference frame of the box; white 
lines represent the laboratory/track reference frame. Panel a modified, with 
permission, from REF. 140   (1980) Springer. Panels c and d reproduced, with 
permission, from REF. 33  (1996) Society for Neuroscience.
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Attractor dynamics
Attractor dynamics refer to the 
properties of a broad class of 
neural networks that have one 
or more stable states. These 
stable states are determined 
by the weights of the recurrent 
connections between the units 
(neurons) in the network. 
Depending on the initial 
conditions, the network will 
end up in one of the stable 
states. Attractor dynamics 
have been used in associative 
memory models, pattern 
recognition and as a 
mechanism for working 
memory maintenance.

Neural network models for path integration
Mechanisms based on self-organizing and self-sustaining 
neural activity, or attractor dynamics, such as those origi-
nally proposed in Hebb’s13 cell assembly theory, have been 
essential components in several models accounting for 
path integration and the head direction system in rats14. 
In path integration, the information to be maintained 
and updated is not a set of discrete items (as are found in 
Hopfield-type attractor networks for discrete memories); 
rather, it is a continuous variable representing position 
or head direction. A continuum of cell assemblies, or a 
continuous attractor15–19, is therefore needed to encode posi-
tion or head direction. Such a continuum can exist in one 
dimension, as in the case of direction; two dimensions, as 
in the case of location in the plane; or many dimensions. 
It is equivalent to a large set of correlated discrete attrac-
tors, in which the energy barriers between neighbouring 
attractors become negligible20,21.

In the head direction system, consider the head 
direction cells, which fire selectively with respect to the 
rat’s head orientation (φ) as a result, primarily, of neural 

integration of head angular velocity signals derived 
from the vestibular system. A model in which the cells are 
arranged conceptually in a circle, according to preferred 
direction, and in which the strength of the excitatory 
connections between two cells decreases with the dis-
tance between their respective preferred directions22–24, 
would result in a focused activity profile (or activity 
bump) centred at a direction φ (FIG. 1). An activity bump 
would arise spontaneously because, for a given total 
activity level, controlled by global feedback inhibition, 
each neuron within the bump receives the maximum 
possible excitation from its neighbours; therefore, the 
bump state is the most stable configuration of such a sys-
tem. Note that, because the cells are arranged in a circle, 
there are no edges, so the network is said to have periodic 
boundaries. In the absence of input other than random 
noise, the bump location is either stable or subject to a 
random drift in position; however, large instantaneous 
changes in bump location are unlikely.

To perform angular path integration, the bump 
would have to move around the circle in accordance 
with changes in the head orientation of the rat. This 
could be achieved by vestibular, rotational visual flow, 
and other angular velocity inputs that drive the bump 
in either a clockwise or anticlockwise direction. Suppose 
an additional circle of neurons (a so-called hidden layer) 
is interposed between the angular velocity signals and 
the head direction cells in the outer circle (FIG. 1), and that 
neurons in this circle encode the conjunction of current 
head direction, derived from top-down connections 
from head direction cells immediately adjacent to them 
in the circle, and angular velocity signals afferent to the 
network. If conjunctive cells receiving clockwise angular 
velocity inputs project asymmetrically to the right of the 
head direction cells from which they receive input, and 
those receiving anticlockwise inputs project to the left, 
the bump can be made to move around the circle in a 
manner consistent with the changing head direction 
— the system performs angular path integration. Note 
that the head direction cells in this model encode relative, 
not absolute, orientation. In the absence of additional 
sensory inputs, slow changes in head direction (below 
the vestibular threshold) or synaptic noise will result in 
disorientation, as shown by Mittelstaedt and Mittelstaedt4 
(BOX 1). However, all cells would maintain their angular 
firing preferences relative to one another, as is observed 
in recordings of head direction cells5.

Continuous attractor-based models for path integra-
tion of position in two dimensions can be constructed by 
a simple extension of the one-dimensional head direction 
model just described9,23,25–27. A two-dimensional continu-
ous attractor network could consist of cells arranged 
conceptually on a two-dimensional sheet according to 
their relative firing locations in two-dimensional space. 
A recurrent synaptic matrix can then be constructed in 
which the strength of the excitatory connections between 
two cells decreases in proportion to the physical distance 
between the cells’ respective place fields. Global feedback 
inhibition would, again, keep the activity from spread-
ing (FIG. 2). As in the one-dimensional model, a bump of 
focused activity would form spontaneously. Movement 

Figure 1 | One-dimensional attractor map model for head direction encoding 
based on neural integration of head angular velocity signals. a | Head direction 
cells are arranged symbolically in a circle in order of their relative head directional 
preferences. Each cell (coloured dots) connects with nearby cells with a synaptic strength 
(or connection probability) that declines as a function of distance (red and grey lines). 
The network is subject to global feedback inhibition (not illustrated) that limits the total 
neural activity. Activity in such a network has a most probable configuration in which the 
activity is focused at one point and declines with distance from that point (warm colours 
represent high activity, progressively cool colours represent progressively lower activity). 
Such a network would keep track of head direction if the hill or ‘bump’ of activity could 
be made to rotate around the ring in correspondence with changes in head direction. 
b | Rotation of the bump in the clockwise or anticlockwise directions can be achieved by 
an intermediate group of two types of conjunctive neuron that receive information 
about head angular velocity from the vestibular system (dashed arrows) and information 
about current head orientation from the cells immediately above them in the outer ring. 
The intermediate group of cells must be of two classes: cells receiving information about 
clockwise motion project to the right of the cells in the outer ring from which they 
receive input, whereas cells receiving anticlockwise vestibular signals project to the left. 
These hidden layer cells drive the activity bump in the corresponding direction around 
the ring. In the absence of motion, activation of all hidden layer cells is assumed to be 
below threshold. In this figure, only active connections are indicated, with the line 
thickness representing firing rate.
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Allocentric space
In contrast to egocentric spatial 
representations, in which 
locations are encoded relative 
to a body axis (for example, 
‘three feet to one’s left’), 
allocentric representations are 
independent of the observer’s 
orientation (for example, ‘three 
feet to the north of one’s 
current location’) or possibly 
even position (for example, 
‘32°N, 111°W’). A road map is 
an example of an allocentric 
representation of space.

Population vectors
A population vector is a list of 
the instantaneous firing rates of 
a population of neurons. For N 
neurons, it represents a point in 
an abstract, N-dimensional 
space. It provides a convenient 
representation of the state of a 
neural ensemble.

horizontal connections in MEC layers III and V 
50, attrac-

tor dynamics could potentially be accomplished in the 
deeper layers alone27,51; in this situation, layer II might 
act as an output layer, integrating activity from deep cells 
with different directional preferences to achieve a non-
directional spatial representation.

Therefore, as an animal moves through its envi-
ronment, the location-specific activity in the grid cell 
network is probably updated principally by a path inte-
gration-based mechanism. The spatial code is therefore 
a relative one, in the sense that the firing of one set of 
cells is determined by the preceding activity state of the 
network and the distance and direction moved by the 
animal in the intervening time, and is not determined 
directly by the pattern of environmental stimuli received 
by an animal at a given location. This possibility is con-
sistent with the environmental invariance of the grid 
field relationships to one another, the imperviousness 
of the grid structure and spacing to removal or displace-
ment of external landmarks, and the fact that the grids 
are expressed immediately in a novel environment39,40. 

These observations suggest that grid cells are part of 
a universal spatial metric similar to the navigation 
system postulated by O’Keefe1, and are consistent with 
the inability of animals with entorhinal lesions to cal-
culate a return path to their home cage on the basis of 
self-motion cues52.

Similar to both head direction cells5,14 and hippoc-
ampal place cells 33–35,53, although self-motion is vital for 
updating the relative position code in the grid network, 
the spatial coordinate system defined by the grid net-
work can become anchored to the specific landmarks of 
individual environments. Grids assume similar phases 
and orientations with respect to external landmarks on 
repeated exposures to the same environment, irrespec-
tive of where the animal starts its run39. The association 
of path integrator coordinates with specific landmarks 
might take place in the hippocampus, which generates 
unique representations for individual environments as 
well as distinguishable events or internal states associ-
ated with a given episode in these environments11,54–57. 
Alternatively, this association might occur within the 
MEC itself, by combining grid activity with specific 
sensory inputs received from the postrhinal cortex. The 
MEC grid cells express location specific variation in the 
amplitude of the grid bumps39. This variation might 
reflect intrinsic inhomogeneities, external information 
afferent to the entorhinal cortex from other cortical 
areas, or return projections from the hippocampus to the 
deep and superficial layers of the entorhinal cortex47,48,58. 
Given that path integrator errors in hippocampal place 
cells and head direction cells are tightly coupled35, it 
appears likely that the alignment of the path integrator 
system reflects a global network interaction.

What sets the scale of the cognitive map?
A map of allocentric space must be endowed with a scale 
at which relative distance is represented. One attempt to 
address the question of scale in the hippocampus made 
use of a graph theory framework, in which CA3 place 
cells constituted nodes, with distance being represented 
by the connection strength between cells59. This model 
provided a possible basis for encoding relative distances 
and for route planning, but its main drawback was the 
lack of a plausible mechanism for reading out the synaptic 
weight parameters. A related proposal is that the distance 
between two locations is inversely related to the correla-
tion of the population vectors of hippocampal neuronal 
ensembles active at the two places60–63. Although plausible 
neural mechanisms can be proposed for reading out the 
similarity of two population vectors, place cell popula-
tion vector correlations beyond a certain distance are 
effectively zero. Based on the typical size of a dorsal hip-
pocampal place field reported in the literature, this dis-
tance would be only 30–40 cm. However, this difficulty is 
mitigated considerably by the observation that place field 
size varies systematically from the dorsal (septal) pole of 
the hippocampus to the ventral (temporal) pole62–64. The 
scale of the spatial code can be defined in a manner that 
is independent of any particular definition of a place field 
by plotting the mean correlation of population vectors as 
a function of spatial separation (FIG. 5f). In area CA1, the 

Figure 4 | Grid cells in the medial entorhinal cortex. a | Implausible as the idea might 
have seemed, cells with regular, periodic place fields are found in the medial entorhinal 
cortex (MEC); however, the arrangement of fields is not rectangular as would have been 
predicted from the Samsonovich and McNaughton26 model implemented on a standard 
torus. Instead, they are distributed with a geometry that can be described as a tiling of 
rhomboids (or of equilateral triangles alternately rotated 180 degrees). The recording 
region is illustrated on a sagittal section of brain through the MEC. Each panel is the grid 
field of one MEC neuron in layer II. The locations of emitted spikes are illustrated with red 
dots; the paths of the rat as grey lines. The grid scale increases with distance from the 
border of the MEC with the postrhinal cortex (POR). b | In addition to ‘pure’ grid cells, 
which encode position only, the deeper layers of the MEC also contain head direction 
cells that are not modulated by location, and (c) conjunctive cells that depend on 
location and head orientation (polar plots represent directional firing rate). All cell 
classes are positively modulated by running speed. These are precisely the cell classes 
predicted in the path integrator model of FIG. 2. DG, dentate gyrus.
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this through a pattern separation process, whereby small 
differences in cortical input patterns are amplified as they 
propagate through the hippocampal network, creating 
differences in the locations and/or firing rates for place 
fields72,73. This process, often referred to as remapping74, 
has been observed after changes in a subset of the sen-
sory cues (such as the geometrical shape or colour of the 
test chamber) in an otherwise constant environment75–77. 
It can also be induced by changes in task demands, 
such as a shift from a free foraging task to an instru-
mental running task78, or by changes in the relationship 
between the current setting of the head direction system 
and the salient external cues35. In old animals, complete 
remapping can occur spontaneously in a highly familiar 
environment from one visit to the next79.

The first indications of remapping were observed in 
area CA1, yet most theoretical models would suggest that, 
based on the connectional divergence and the recurrent 
connectivity of the earliest stages of the hippocampal 
input, remapping in the CA1 reflects pattern separation 
mechanisms upstream in the dentate gyrus and CA3 
subfields. Based on analogies with the cerebellum, where 

decorrelation has been postulated to be accomplished by 
the dispersal of incoming sensory information onto a 
vastly expanded layer of granule cells before the infor-
mation reaches the associative synapses of the Purkinje 
cells80,81, it has been suggested that input from the 
entorhinal cortex is decorrelated as it is spread out onto 
a larger number of granule cells in the dentate gyrus72. In 
addition, the firing of the granule cells is sparse, and each 
granule cell makes synapses with only a limited number 
of CA3 pyramidal cells, suggesting that a combination of 
mechanisms might potentially contribute to decorrela-
tion of cortical information. Whether these hypothetical 
mechanisms represent the origin of the orthogonaliza-
tion required for remapping in the hippocampus remains 
to be determined; however, when rats are tested in two 
similarly shaped enclosures with different background 
contexts, the subsets of cells active in area CA3 in the 
two rooms are completely orthogonalized, showing no 
more overlap in activity than expected by chance82,83. The 
strong orthogonalization of spatial representations in the 
CA3 points to pattern separation as a major function of 
the early stages of hippocampal formation.

Figure 6 | Combining multiple periodic grids at different spatial scales can result in non-periodic place fields. 
a | The effects of slight variation in grid scale (6% in this case) on the periodicity of a mapping space defined by the 
superimposition of the output of two grid modules. In general, the summation of two periodic signals that differ in 
frequency gives rise to a signal with amplitude maxima that occur with a much lower frequency (the difference between 
the fundamental frequencies). b | Multiple grid fields with different scales, as expressed by cells at different dorsoventral 
levels of the medial entorhinal cortex can be combined, for example, by linear summation, resulting in an activity field that 
has only one large maximum. The spatial frequency of the patterns increases systematically from left to right. A simple 
thresholding operation applied to the summed grid fields (here implemented by a sigmoidal function shown in red) yields 
a field that is restricted to a region of space. This is a potential mechanism for the generation of non-periodic place fields 
such as those observed in the hippocampus.
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Continuous attractor
Networks with continuous 
attractor properties can 
maintain a stable activity state 
over time; however, the 
possible states are not discrete 
as in attractor networks but 
can vary continuously. 
Continuous attractor networks 
have, for example, been used 
to represent the dynamics of 
the head direction system in 
which an arbitrary angle has to 
be maintained over time.

Vestibular system
The vestibular system provides 
information about movement 
and orientation in space. 
Receptors in the semicircular 
canals and otolith organs of the 
inner ear are sensitive to 
movements consisting of 
rotational and translational 
accelerations. Vestibular 
information can be processed 
in the CNS to derive relative 
changes in head direction or 
position.

Rotational visual flow
As the head turns, visual 
information flows past the eye. 
The rotational visual flow can 
be used to calculate and 
update relative head direction.

Torus
Consider an elastic rectangular 
sheet. When gluing together 
the two longer sides of the 
sheet a tube is formed. After 
gluing together the ends of the 
tube, a doughnut-shaped 
object is formed, which is 
termed a torus. If the elastic 
sheet represents a map of a 
spatial area, the creation of the 
torus will form a map with 
periodic boundary conditions 
along two perpendicular 
dimensions.

of the activity bump according to speed and directional 
information alone, thereby tracking the rat’s position, 
could be effected through a two-dimensional hidden 
layer analogous to the one-dimensional hidden layer in 
the head direction model28. This layer could accomplish 
the summation of the position (encoded in the continu-
ous attractor layer) and the displacement vector (com-
prised of head direction and linear speed signals). Cells 
in this direction-specific layer would encode, conjointly, 
the rat’s position and velocity vectors9,23,26; therefore, 
they would combine head direction and running speed 
inputs with location information from the attractor layer. 
Projections from the continuous attractor layer to the 
hidden layer would connect cells with the same posi-
tion preference (FIG. 2). The return connections from the 
hidden layer to the continuous attractor layer, however, 
would be offset according to the directional preference 
of the cell of origin: for cells in the hidden layer that are 
selective for position x, head direction φ would project 
to cells in the attractor layer with an integrated position 
shifted in the direction φ. As a consequence, when the 
rat moves, velocity modulated cells in the hidden layer, 
selective for direction φ, will be activated and provide 
an input that shifts the activity bump in the direction φ. 
The rate of increase in the firing rate of hidden layer cells 
with running speed v would determine the scale of the 
spatial representation, as seems to be the case in the hip-
pocampus (see below). Briefly, a stronger input from the 
direction-specific layer would cause the activity bump to 
move faster, thereby generating a rapidly changing, short-
scale representation (small place fields). Reducing the 
speed dependence of hidden layer cells would cause the 
activity bump to move more slowly, and would yield a 
coarser spatial representation (larger place fields).

One problem with the two-dimensional model 
described would have been familiar to pre-Columbus 
Europeans, who believed that the earth was flat and 
finite; what happens when the rat runs outside the area 
represented by the cells? To overcome this difficulty, 
Samsonovich and McNaughton26 proposed that the cell 
array in which the continuous attractor was represented 
had periodic boundaries, equivalent to a torus27. The 
torus topology is the two-dimensional analogue of the 
ring topology suggested for the head direction system. 
This periodic boundary condition implies that, as the rat 
runs in a straight line, a given cell should activate period-
ically. So, in a large, two-dimensional environment, each 
cell would have multiple place fields arranged in a square 
grid (FIG. 3). However, although hippocampal place cells 
can have multiple fields in a large enough environment29,30, 
periodic fields have never been reported.

Grid cells in the medial entorhinal cortex
The search for the navigational system postulated by 
O’Keefe1 focused initially on the hippocampus; indeed, 
if the environment and the animal’s behaviour remain 
constant, the activity of ensembles of place cells can 
be decoded to indicate accurately the animal’s loca-
tion within the environment31. However, except under 
unusual experimental manipulations, knowledge of the 
firing relationships among an ensemble of hippocampal 
place cells in one environment is of no value in predict-
ing even relative location in a separate environment32,33. 
The spatial codes in the hippocampus for different 
environments are orthogonal (statistically independent). 
Although the activity of a place cell can be influenced 
by, and can become coupled through experience to, 
conjunctions of environmental features, their firing 

Figure 2 | Extension of the one-dimensional attractor map concept to two dimensions: a model for path 
integration. Neurons arranged in a plane (a) have interconnections that decline in strength (or probability) monotonically 
with distance (red arrows). Notice that a boundary problem exists for connections near the edge of the layer of neurons. 
A solution for this problem is illustrated in FIG. 3. Global feedback inhibition (not shown) keeps the net activity within a 
narrow range, leading to a focused spot or ‘bump’ of activity somewhere in the plane (b). The bump can be made to move 
in correspondence with a rat’s motion using an intermediate layer of cells that are conjunctive for position on the plane 
and head orientation, if the activity of these cells is positively modulated by running speed and the cells encoding a given 
head direction project asymmetrically to the corresponding side of the cells in the attractor layer from which they receive 
input. The thresholds are arranged so that these hidden layer cells are silent when there is no motion.

R E V I E W S

666 | AUGUST 2006 | VOLUME 7  www.nature.com/reviews/neuro



Neural dynamics of 
path integration

[McNaughton et al., Nature reviews neuroscience 2006]
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Orthogonal
Mathematically, two lists of 
numbers (vectors) with a 
correlation of exactly zero are 
said to be orthogonal. 
Hippocampal spatial codes are 
said to be orthogonal with 
respect to two arbitrary spatial 
environments if the locations 
and rates at which cells fire 
relative to each other are 
statistically independent.

also reflects how far and in what direction an animal 
has moved from a reference point, irrespective of the 
external sensory stimuli that impinge on it at a given 
moment28,32–35 (BOX 1). Accumulating evidence suggests 
that place cells express the output of a path integration 
mechanism9,14, but there have been conflicting evidence 
and views as to whether an intact hippocampus proper 
either performs, or is even required for, path integra-
tion12. In agreement with earlier suggestions that the 
path integration system might involve loops that include 
the entorhinal cortex26,36,37, recent studies have pointed to 
the medial entorhinal cortex (MEC) as a potential loca-
tion for the path integrator.

Some principal cells in the MEC have sharply delin-
eated firing fields that collectively signal an animal’s 
current position in a small environment as accurately 
as place cells in the hippocampus38. However, in a suf-
ficiently large experimental environment, many MEC 
cells exhibit a striking feature of their activity that is not 
seen anywhere in the hippocampus proper: a grid-like 
structure of place fields repeating at regular intervals 
over the entire environment, as implicitly predicted by 
the toroidal chart model26, except that the unit cell of the 
grid is not a square but a rhombus with internal angles of 
60 and 120 degrees39 (FIG. 4). Such a rhombus can also be 
constructed from two oppositely orientated equilateral 
triangles, giving rise to the descriptive term ‘triangular 
grids’39. The two formulations are descriptively, but not 
necessarily computationally, equivalent.

The geometrical structure and spacing of grid fields 
in layer II MEC neurons is independent of the size or 
shape of the environment39,40. The grid spacing and grid 
orientation of neighbouring grid cells is almost identi-
cal, but their grids are offset relative to each other in an 
apparently random manner, and all grid phases (offsets) 
are equally represented within a small region of cortex39. 
Unlike the hippocampus proper, in which the spatial fir-
ing relationship of any arbitrary pair of cells is essentially 
unpredictable across environments, the relative offset 
(spatial phase) of grid fields for any two cells appears to 
be universal (constant across all environments)40. This 
property is analogous to the behaviour of head direction 
cells, which similarly retain their relative preferred firing 
directions across environments5,35,41, and corresponds to 
the behaviour of the universal chart proposed in theo-
retical models of path integration25,26,37. In addition, some 
subicular place cells also appear to have such universal 
properties42. Grid orientation and scale at a given dorso-
ventral position is consistent across all layers of the 
MEC43, which would be necessary for a local region of 
the cortex to act as a path integrator module. Currently 
there are insufficient experimental data to determine 
whether grid orientation is consistent along the entire 
dorsoventral axis.

Activity patterns of grid cells in layer II can be 
updated by input from afferent structures44–46, but recent 
studies indicate that the integration of directional and 
positional information takes place within the grid 
network itself 

43, using neurons with conjunctive place 
and directional properties much like those predicted by 
Samsonovich and McNaughton26 (FIGS 2,3). Layers III, 
V and VI of the MEC contain not only grid cells, but 
also head direction cells and cells with conjunctive grid 
and head direction properties. All three cell types are 
positively modulated by running speed. Conjunctive 
cells are located predominantly in layers III and V, 
and the principal neurons there have extensive axonal 
projections up to the grid cell population in layer II 
(REFS 47–49), where they could drive the shift in the 
active grid cell population in a manner consistent with 
an animal’s motion. By way of their superficial dendrites 
(BOX 2), these conjunctive cells are also likely to receive 
input from grid cells in layer II, as predicted by the con-
tinuous attractor model (FIG. 2). Given the presence of 

Figure 3 | Solving the boundary problem for the path integration network. a | The 
problem with a planar path integration system is that the size of the mapping space is 
limited by the number of cells. The rectangles represent a hypothetical ‘attractor map’ (or 
‘chart’26) without periodicity in the synaptic matrix. b | As described in FIG. 2, each node 
represents a cell, and warm colours represent high firing rates. Samsonovich and 
McNaughton26 deal with the problem of edge effects in their path integrator model by 
postulating that the connections of cells at the edges wrapped around, creating a 
periodic boundary in two dimensions analogous to the periodic boundary condition of 
the head direction model. This gives rise to a synaptic matrix with a toroidal topology (c). 
This solution solves the edge effect problem in terms of dynamics, but does not really 
solve the positional ambiguity problem because it predicts that, if the animal explores a 
large enough space, each place unit will be activated periodically, giving rise to (d) a 
rectangular distribution of place fields. d | The red and black arrows represent the 
movement of the activity bump across the layer, and its reappearance at the opposite 
side with sufficient travel in one direction, due to the periodic connection matrix. The 
right panel illustrates the fact that, if the animal thoroughly explored a sufficiently large 
environment, a periodic matrix of this type would result in spatial firing fields that repeat 
at regular spatial intervals, giving rise to a square grid of activity maxima.
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Fig. 1. The major modules of the RatSLAM system reproduced from [18]. The local 

view cells represent learnt unique scenes in the environment. The pose cells represent 

the belief about the current pose. The experience map is a topological representation 

encoding the pose cells and local view cells in nodes and links. 

2.1.1. Pose Cells 

The pose cells are a Continuous Attractor Network (CAN) of units [25], connected by 

excitatory and inhibitory connections, similar in characteristics to a navigation neuron found 

in many mammals called a grid cell [26]. The network is configured in a three-dimensional 

prism (Fig 1), with cells connected to nearby cells by excitatory connections, which wrap 

across all boundaries of the network. The dimensions of the cell array nominally correspond 

to the three-dimensional pose of a ground-based robot ± x, y, and ș. The pose cell network 

dynamics are such that the stable state is a single cluster of activated units, referred to as an 

activity packet or energy packet. 7KH�FHQWURLG�RI�WKLV�SDFNHW�HQFRGHV�WKH�URERW¶V�EHVW�LQWHUQDO�

estimate of its current pose. This dynamical behavior is achieved with locally excitatory, 

globally inhibitory connectivity, described by the distribution İ:  
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where kp and kd are the variance constants for place and direction respectively, and a, b and c 

represent the distances between units in x', y' and ș
 co-ordinates respectively. The variance 

constants are fixed as a result of extensive tuning and should not require tuning. Connections 

wrap across all six faces of the pose cell network, as indicated by the longer arrows in Fig 1. 

The change in D�FHOO¶V�activity level ¨3 due to internal dynamics is given by: 

[Ball, Wyeth, Cork, Milford, 2013]
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autonomously explore this environment. For this dataset, WKH�L5DW¶V�H[SORUDWLRQ�ZDV�JXLGHG�E\�

a human who gave directives on which way to turn at each intersection. 

The dataset was obtained while the iRat explored a road movie set based on Australian 

geography, containing prominent Australian landmarks such as the Sydney Opera House and 

Uluru.  A camera mounted overhead provided images that allowed us to extra ground truth 

information. The iRat ROS bag dataset is approximately 16 minutes long and includes the 

L5DW¶V camera images (shown in Fig. 13 (b-c), range and odometry messages, the overhead 

FDPHUD¶V�LPDJHV�(shown in Fig. 13 (a)) and tracked pose information. 

 

Fig. 12. (a-b) The labeled iRat robot internals.  (c) The iRat alongside a standard 

computer mouse to show scale.  

 

Fig. 13. The iRat 2012 dataset (a) overhead view and (b-c) sample frames from the 

onboard camera. 
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15 

 
Fig. 4. Screenshots of OpenRatSLAM in action. (a) Local View Cells showing the 

URERW¶V�FDPHUD image and current-matched template pair, (b) Experience Map, (c) Pose 

Cell Network showing the activity packet wrapped across the prism faces, and tracking 

RI� WKH�DFWLYLW\�SDFNHW¶V�FHQWURLG�PRYHPHQW� LQ� WKH� �x, y) plane in green, (d) overhead 

image rendered by ROS image_viewer, (e) the topological map and pose rendered by 

ROS rviz. 7KH� UHG� DUURZ� VKRZV� WKH� SRVH� RI� WKH� URERW� ZKLFK� PDWFKHV� WKH� URERW¶V�

location in the overhead image and in the experience map. 
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5.2. 2[IRUG¶V New College 2008 Dataset 

The New College dataset is a well known dataset from the Oxford University taken in 

England in 2008 [23]. The full dataset includes, laser, odometry, stereo camera images, 

panoramic images, and GPS recordings in a custom format. Data collection was performed 

outdoors on the 2.2km path shown in Fig. 11 using a Segway RMP200 robot. In order to run 

the dataset with OpenRatSLAM the panoramic images and odometric information have been 

re-encoded into a ROS bag file. Timestamps were extracted from the original dataset to 

ensure proper timing. The odometric information has been integrated to match the panoramic 

image rate of 3Hz. 

 

Fig. 11. This figure shows the Oxford New College dataset. The path the robot follows 

is marked in yellow. Image reproduced from [23].  

5.3. iRat 2011 Australia dataset 

The iRat ± intelligent Rat animat technology ± is a small mobile robot that has a similar size 

and shape to a large rodent (Fig. 12). The robot has differential wheel drive, a forward facing 

wide field of view camera, speakers and microphone, IR proximity sensors, and wheel 

encoders. It also has an onboard 1GHz x86 256MB RAM computer running Ubuntu and 

802.11 g/n WLAN. The iRat has center and wall following algorithms that allow it to 

[Ball, Wyeth, Cork, Milford, 2013]

31 

 
(a) 

 
(b) 

Fig. 17. Experience map, (a) showing the topological map after epoch A then (b) at the 

end of the experiment. The final map is similar to the ground truth map, except for a 

twist at the single entry point between the large loop on the right and the rest of the 

map. 

Fig. 18 shows a graph of the active experience and visual template over the duration of the 

experiment. As in the St Lucia dataset, experiences are learnt at approximately double the rate 

of visual templates, consistent with the tuning process indicated in Section 4.2. The forward 

backward matching of the panoramic images can be seen by the segments of increasing and 

decreasing visual templates and experiences. An example of panoramic image matching is 

shown in Fig. 19. 
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chance for the ensemble scheme to work. We plan to tackle this
challenging scenario using feature descriptors that were trained
on event data using an end-to-end architecture, as outlined in
Section VI.

C. Comparison on the DDD-17 dataset

Traverses used in the DDD-17 dataset: To show that our
method generalizes to other datasets, we now present results
obtained on the DDD-17 dataset [20]. Using GPS information,
we found two sets of traverses suitable for VPR within DDD-17:
the first set captured on a freeway in the late evening in
rainy conditions (query images) and at daytime in the second
traverse (reference images), and the other set captured in the
evening in the first traverse (query images) and at daytime
in the second traverse (reference images)5. We annotated the
matching traverses in the same way as for the Brisbane-Event-
VPR dataset (see Section IV-C).

Performance on DDD-17: The general performance trend
follows that presented for Brisbane-Event-VPR. Specifically,
the ensemble outperforms the individual models on average by
24.0±9.0% in the first set and 3.7±0.1% in the second set. The
ensemble also performs better than the best individual model
(13.2% and 2.4% performance increase in the first and second
set, respectively). We provide qualitative results obtained on
the DDD-17 dataset in Fig. 8.

Note that the relative improvements are not as large as in
Brisbane-Event-VPR, as the mean absolute performance is
much higher (73.6% precision @100% recall in the DDD-17
dataset compared to 51.3% in our dataset for the best perform-
ing individual model; see Fig. 7). As our ensemble “filters out
the noise”, the relative performance increases more in those
cases where individual performances are lower.

Fig. 7 also shows that performance obtained using RGB
frames on DDD-17 is lower than that of the individual models,
which is contrary to the performance on Brisbane-Event-VPR.

D. Ablation studies

Image reconstruction method: We now briefly show
that our ensemble scheme is agnostic to a particular image
reconstruction method. While the aforementioned results were
obtained using E2VID [31], we also evaluated the performance
when using FireNet [33] as the reconstruction method, a much
smaller and faster architecture compared to E2VID. We found
that there is neither a statistically significant difference in the
absolute performance of individual models (p > 0.1) nor a
significant performance difference of the ensemble models
(p > 0.1).

Comparison to other ensemble combination strategies:

Besides the mean rule, the majority voting scheme is one
of the most commonly used strategies to combine ensemble
members [14]. In this scheme, the distance matrices Dk are
combined within DMV (nQ, nR), which is a zero matrix with
ones at the modal value of {arg min

nR

Dk(nQ, nR), 8nQ}.

5Specifically, ‘rec1487350455’ and ‘rec1487417411’ in the first set, and
‘rec1487779465’ and ‘rec1487782014’ in the second set. Several other routes
are traversed in opposite directions, which is outside the scope of this letter
(but see [36] for a possible way of tackling VPR for opposing viewpoints).

Query Reference GT Reference match

Fig. 8: Example matches of the ensemble and ground-truth (GT) matches
on the DDD-17 dataset. Top two rows: success cases where the majority of
individual methods failed. Bottom two rows: failure cases.

While the majority voting scheme outperforms the individual
models, it performs 6.0± 4.9% worse than the mean rule used
in the proposed ensemble scheme.

We argue that majority voting does not perform favorably
as it only considers the highest-ranking match and thus might
disregard other strong matches. More generally, majority voting
does not consider the “goodness” (magnitude) of a match. The
mean rule also finds “near misses” in the ensemble members,
which is not the case for majority voting.

We also investigated the product, median, min, max, trimmed
mean and weighted average rules [14], and similarly found that
they do not perform as well as the mean rule (see Multimedia
Material).

Comparison to a model-based ensemble: We now com-
pare to a more typical “model-based” ensemble, where two
ensemble members are obtained, one by using E2VID [31] as
the image reconstruction method and the other one by using
FireNet [33]. Contrary to our ensemble that uses temporal
windows of varying sizes, the model-based ensemble is based
on a single window size (⌧ = 55ms, however, as noted earlier,
the choice of the window size does not significantly impact
performance).

While the model-based ensemble also performs significantly
better than each of the ensemble members (17.8 ± 6.4%
performance improvement), the performance improvement is
not as significant as when using temporal ensembles. It will
be interesting to build model-based ensembles with more
members as soon as further image reconstruction methods
become available, e.g. [37].

VI. CONCLUSIONS

In this letter, we introduced an ensemble scheme to com-
bine temporal event windows of different lengths. We have
demonstrated that the ensemble scheme proves particularly
effective in the visual place recognition task. To allow for large-
scale evaluations of our method, we recorded the Brisbane-
Event-VPR dataset, which we make available to the research
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Event-Based Visual Place Recognition
With Ensembles of Temporal Windows

Tobias Fischer , Member, IEEE and Michael Milford , Senior Member, IEEE

Abstract—Event cameras are bio-inspired sensors capable of

providing a continuous stream of events with low latency and high

dynamic range. As a single event only carries limited information

about the brightness change at a particular pixel, events are

commonly accumulated into spatio-temporal windows for further

processing. However, the optimal window length varies depending

on the scene, camera motion, the task being performed, and

other factors. In this research, we develop a novel ensemble-based

scheme for combining temporal windows of varying lengths that

are processed in parallel. For applications where the increased

computational requirements of this approach are not practical,

we also introduce a new “approximate” ensemble scheme that

achieves significant computational efficiencies without unduly

compromising the original performance gains provided by the

ensemble approach. We demonstrate our ensemble scheme on the

visual place recognition (VPR) task, introducing a new Brisbane-

Event-VPR dataset with annotated recordings captured using

a DAVIS346 color event camera. We show that our proposed

ensemble scheme significantly outperforms all the single-window

baselines and conventional model-based ensembles, irrespective
of the image reconstruction and feature extraction methods used

in the VPR pipeline, and evaluate which ensemble combination

technique performs best. These results demonstrate the signifi-

cant benefits of ensemble schemes for event camera processing

in the VPR domain and may have relevance to other related

processes, including feature tracking, visual-inertial odometry,

and steering prediction in driving.

Index Terms—Localization, Data Sets for SLAM, Neuromor-

phic Sensing, Event-Based Vision

I. INTRODUCTION

E
VENT cameras output asynchronous per-pixel brightness
changes (i.e. events), rather than fixed-rate images like

traditional frame-based cameras. An event is defined by its
pixel coordinates, a timestamp with sub-millisecond precision,
and the polarity denoting whether the brightness increased or
decreased. Event cameras have recently gained popularity due
to some of their advantageous properties over frame-based
cameras, such as significantly higher dynamic range, very low
latencies, and lack of motion blur [1]–[3].

In addition to these advantages, the continuous stream of
events can be interpreted in multiple ways. For example, each
incoming event can be used to update the system’s current
state [4]–[6], or events can be accumulated and then batch-
processed [7]–[13]. The accumulation can be performed either
over a fixed time span, or over a fixed number of events – we
refer to these accumulated events as temporal windows.

In prior work, the window length (time or number of events)
for batch-processing was chosen depending on the dataset [7]
or based on the task performance on a validation set [10].
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Fig. 1: Ensemble-Event-VPR. Given a query event sequence, we consider a set of temporal windows with varying time spans ⌧ or window lengths N . For
each of these temporal windows, we reconstruct corresponding query images. Features extracted from these query images are compared to the corresponding
features (same window time span / length; correspondence is indicated using the same border color) of the reference images, resulting in individual distance
matrices. The individual distance matrices are then combined using the mean rule, resulting in the final ensemble matrix.[Fischer Mildord, 2020]
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Figure 2. Overview of the path integration and map learning network: Two identical SNNs with five
functional layers each estimate the yaw and pitch of the iCub’s head pose, integrating the respective
motor velocities. When the robot’s gaze is directed at a visual landmark, the yaw and pitch angles are
stored in plastic synapses connecting the Vision and Goal neurons to the Reset Head Direction and Goal
Head Direction layers, respectively. Excitatory synapses (red lines) between layers connect neurons in a
one-to-one manner. The velocity input neurons are connected to shift layers in a one-to-all manner. Plastic
connections (purple lines) are one-to-all, and inhibitory connections (blue lines) are all-to-all-but-one. Only
exemplary connections are shown in order to avoid clutter. See Section 4.3 for details.

4 THE HEAD-DIRECTION SNN

4.1 Network overview297

The path integration network consists of two identical SNNs for yaw and pitch estimation, Fig. 2. Each of298
these SNNs, similar to networks used in Kreiser et al. (2018c,a), consists of six layers of N = 200 neurons299
each:300

• the current head direction layer (CHD),301

• the shift left layer (SL),302

• the shift right layer (SR),303

• the integrated head direction layer (IHD),304

• the reset head direction layer (RHD),305

Frontiers 9

[Kreiser et al. Sandamirskaya, Frontiers 2019]
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(3a) (3b)

Figure 3. (a) Parameters of iCub movements in the experiments. (b) Histogram of the algorithmic time
step duration as recorded by YARP in our experiments. The average timestep is 1.6ms, but in rare cases,
time steps can be as long as 40ms. Note, these values hold for the specific version of the Loihi API used.

(4a) (4b) (4c)

Figure 4. (a) The iCub robot and visual fiducial (dot pattern). (b) The visual trajectory of the fiducial over
dataset 1. (c) An example of the ATIS camera output.

• Head-shaking: The robot shakes its head side-to-side between the joint limits (j2
min

and j
2
max). No412

vertical motion.413

• Random: The robot chooses random velocities at which to move both vertically and horizontally. The414
velocity is chosen as a uniform distribution between 0 to v

0 and 0 to v
2 for the vertical and horizontal415

motion, respectively. If a joint limit is reached, the velocity of the respective joint is reversed. New416
velocities are chosen after rtimeout seconds.417

In addition to direction, we changed the speed of the robot’s movements: v01 and v
2
1 are the base velocities418

used, during experiments the speed was increased such that v2 is doubled and v4 is quadrupled the base419
speed, applied to both joints simultaneously (see Table 3a).420

Five datasets were recorded with the robot beginning in the home position and then proceeding with421
the following strategy: nodding, home, head-shaking, home, random with speed v1 for approximately 30422
seconds, random with speed v2 for approximately 30 seconds, random with speed v4 for approximately423
30 seconds, and, finally, home. The data was recorded from one of the ATIS cameras on the robot after a424
pre-processing stage to eliminate saving uninformative events (a noise filter). The motor-control module425
output the velocity of the head when the commanded velocity changed; the data was saved along with the426
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using DFT



Conclusions

the navigation problem entails both knowing 
where you are and how to go places 

navigation can be performed by behavioral 
and neural dynamics 

recalibration of location based on 
recognition … can be view-based

integration by (neural) dynamics … in which 
space-time continuous processes… lead to 
discrete transitions at instabilities


