Navigation

Gregor Schöner
May 2022

Problem

we talked about how to plan motion toward targets avoiding obstacles

- in many cases, information about targets may be available through a map that represents where relevant locations are in the world
\square to use a map, a robot/organism needs to known "where it is" on the map: egolocation estimation
\square that estimate must be updated as a robot/ organism moves...

Dead-reckoning/path integration

\square if the agent knows its current velocity=heading direction + speed (and keeps track of time), it can estimate its change of position by integration

[McNaughton et al., Nature reviews neuroscience 2006]

Dead-reckoning/path integration

a long history in technology... dating back to literal "navigation": sailing ships...
\square estimating heading direction based on a compass
\square estimating speed by counting "knots"... which entails an estimate of time
\square updating position in a map

Dead-reckoning/path integration

\square modern technology increases the precision
\square e.g. inertial guidance by measuring acceleration
\square precise measurement of time
\square with good control, the control signals can also be used to predict the new state ...
\square optimal estimation integrates prediction and measurement...

Dead-reckoning/path integration

\square fundamental problem

the integration leads to an accumulation of uncertainty...
\square the principle of Brownian motion...

Dead-reckoning/path integration

\square a need for "recalibration" or re-setting of the estimate.. based on "recognizing" the true location on the map...
\square historical solution:

- landmark recognition...
\square triangulation
modern variants based on special beacons, GPS etc

Dead-reckoning/path integration

\square animals including humans use path integration

[Loomis, Klatzky, 1993]

Dead-reckoning/path integration

\square animals including humans use path integration

blind from birth

blind from accident
seeing

Landmark recognition

\square landmarks are not necessarily objects...
\square empirical evidence that views serve to estimate ego-position and pose
\square evidence for views used from animal behavior and neural data

A Experimental environment $\therefore \underset{\text { Mountains }}{s A n}$

B Experimental tasks

Environmental learning Object viewing

Judgment of Relative Direction
\#=+Guitar@^*
Facing \#=Umbrella^*
\#=+.Tree(@ ${ }^{\wedge *}$?

Distance comparison
Free recall

C Experimental procedure

Maps

when can we say does an animal use a map?
rather than use stimulus-response chaining
$\square=>$ when it can take short-cuts

[Peer et al, 2020]
[Poucet, I993]

SLAM

- Simultaneous Localization and Mapping

[Durrant-Whyte, Baily, 2006]

SLAM

problem of learning/optimizing path integration... and using this to associated landmark information with locations

- problem of loop closure

(Neural) dynamics of navigation

dynamics for ego-position estimation
dynamical approach to learning the map: network of locations (home bases) at which the agent knows where it is relative to others
\square dynamics of path planning

Self-calibration based on invariant view recognition:
Dynamic approach to navigation

Neural and behavioral architecture

Visual place navigation

\square
a visual surround (unsegmented) acquired in clusters around particular locations (home bases)
\square views are stored together with current position estimate (translation/rotation)

Sample environment

Evidence for home bases

\square animals in given terrain build home bases by rearing in locations where they spend most of their time

7	7^{\prime}	0	$0^{\prime \prime}$	1
6^{\prime}	$7^{\prime \prime}$	$0^{\prime \prime}$	$1^{\prime \prime}$	1^{\prime}
6	$6^{\prime \prime}$	C	$2^{\prime \prime}$	2
5^{\prime}	$5^{\prime \prime}$	$4^{\prime \prime}$	$3^{\prime \prime}$	$2^{\prime \prime}$
5	$4^{\prime \prime}$	4	$3^{\prime \prime}$	3

[Eilam, Golani, 1989]

Visual place navigation

\square Each view in home base is matched to current view.... with all possible rotations actively generated from memorized view

Visual place navigation

\square Correlation function across rotation angle peaks sharply at true angular orientation of agent, even if translatior is not precise...
\square so that estimation of orientation is possible while agent is in recepti field of place cell

Visual place navigation

Correlation with actively shifted memory views decays spatially in way that reflects how distal the view is.... place field..

scale: 5

Visual place navigation

The level of correlation across multiple views within a home base generates a place view representation of translation => position estimate

Place-cell like spatial view representation

Neural and behavioral architecture

Integration by an attractor dynamics

\square every sensory estimate contributes a "force-let" to a dynamical system whose attractor is the estimate of ego-position
\square for vision: space to rate code... removes the problem of normalization

Recalibration from instability

with visual match, a strong attractor force-let induces instability in which the estimate gets reset to the visually specified estimate

which resets the dead-reckoned estimate as well

Recalibration

 from instability\square with visual match, a strong attractor force-let induces instability in which the estimate gets reset to the visually specified estimate
which resets the dead-reckoned estimate as well
no visual estimate

Neural and behavioral architecture

Integrating it all: dynamics all the

a reset event

Visual match for home base recognition

Relaxation times (solid: tau_int,vis dashed: tau_int,dr dotted: tau_dr)

Further development:

© complex behavioral organization
robotic implementation

Autonomous behavioral organization

neural dynamics organizes sequence of behaviors...

Autonomous behavioral organization

■ neural dynamics organizes sequence of behaviors...

How neurally realistic is this?

Neural mechanisms of navigation

neural representation of path integration

[McNaughton et al., Nature reviews neuroscience 2006]

Heading direction

\square Neural evidence for head-orientation cells... that function as heading direction representation

- Neural attractor dynamics (neural field) for heading direction

[McNaughton et al., Nature reviews neuroscience 2006]

Place and grid cells

\square neural representation of location in Hippocampus and Entorhinal Cortex
a

[McNaughton et al., Nature reviews neuroscience 2006]
b

Place and grid cells

\square support building a place representation by a neural field

[McNaughton et al.,
Nature reviews neuroscience 2006]

Neural dynamics of path integration

No motion

[McNaughton et al., Nature reviews neuroscience 2006]

Neural dynamics of path integration

[McNaughton et al., Nature reviews neuroscience 2006]

Neurally inspired technical solution

[Ball,Wyeth, Cork, Milford, 20I3]

RAT-Slam

[Ball,Wyeth, Cork, Milford, 20I3]

RAT-Slam

[Ball,Wyeth, Cork, Milford, 20I3]

RAT-Slam

(b)

[Ball,Wyeth, Cork, Milford, 20I3]

Event-based place recognition

\square spiking neural vision system...

Fig. 8: Example matches of the ensemble and ground-truth (GT) matches on the DDD-17 dataset. Top two rows: success cases where the majority of individual methods failed. Bottom two rows: failure cases.
[Fischer Mildord, 2020]

Neuromorphic head-direction estimate

using DFT

[Kreiser et al. Sandamirskaya, Frontiers 2019]

Neuromorphic head-direction estimate

\square using DFT

[Kreiser et al. Sandamirskaya, Frontiers 2019]

Conclusions

\square the navigation problem entails both knowing where you are and how to go places
\square navigation can be performed by behavioral and neural dynamics

- recalibration of location based on recognition ... can be view-based

■ integration by (neural) dynamics ... in which space-time continuous processes... lead to discrete transitions at instabilities

