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Problem

M we talked about how to plan motion toward
targets avoiding obstacles

® in many cases, information about targets may
be available through a map that represents
where relevant locations are in the world

® to use a map, a robot/organism needs to
known “where it is” on the map: ego-
location estimation

M that estimate must be updated as a robot/
organism moves...



Dead-reckoning/path integration

M if the agent knows its current velocity=heading
direction + speed (and keeps track of time), it can
estimate its change of position by integration
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[McNaughton et al., Nature reviews neuroscience 2006]



Dead-reckoning/path integration

M a long history in technology... dating back to
literal “navigation”: sailing ships...

B estimating heading direction based on a compass

B estimating speed by counting “knots”... which entails an
estimate of time

M updating position in a map



Dead-reckoning/path integration

B modern technology increases the precision
B e.g. inertial guidance by measuring acceleration
B precise measurement of time

B with sood control, the control signals can also be used to
g g
predict the new state ...

B optimal estimation integrates prediction and measurement...



Dead-reckoning/path integration

® fundamental problem

M the integration leads to an accumulation of uncertainty...

M the principle of Brownian motion...

A u(t)




Dead-reckoning/path integration

M a need for “recalibration” or re-setting of the
estimate.. based on “recognizing” the true
ocation on the map...

M historical solution:

M landmark recognition...

M triangulation

B modern variants based on special beacons, GPS
etc



Dead-reckoning/path integration

B animals including humans use path integration

[Loomis, Klatzky, 1993]



Dead-reckoning/path integration

B animals including humans use path integration
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Landmark recognition

M [andmarks are not necessarily objects...

B empirical evidence that views serve to estimate

ego-position and pose

A Experimental environment
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B Experimental tasks
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Spatial domain

Maps

M when can we say does an animal use a map?

M rather than use stimu

M => when it can take short-cuts

Euclidean-based Graph-based

Both

it l FiiiA
_
[Peer et al, 2020]

us-response chaining

[Poucet, 1993]



SLAM

B Simultaneous Localization and Mapping

[Durrant-Whyte, Baily, 2006]



SLAM

B problem of learning/optimizing path integration...
and using this to associated landmark information

with locations

Map and Path
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(Neural) dynamics of navigation

B dynamics for ego-position estimation

B dynamical approach to learning the map: network of
locations (home bases) at which the agent knows
where it is relative to others

B dynamics of path planning
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Visual place navigation

M a visual surround (unsegmented) acquired in
clusters around particular locations (home bases)

M views are stored together with current position
estimate (translation/rotation)

Sample environment

base 2  base 1\

CD; agent —
base 3




Evidence for home bases

B animals in given terrain build home bases by
rearing in locations where they spend most of
their time

Places
1

[Eilam, Golani, 1989]



Visual place navigation

B Each view in home base is matched to current
view.... with all possible rotations actively
generated from memorized view

Home-base associative mgtrix memory
r...

Current view | rot=0

base 3

best match here: home-base 2, dPhi=r

base 2




Visual place navigation

B Correlation function
across rotation angle
peaks sharply at true
angular orientation of
agent, even if translatior

IS ot precise...

correlation

M so that estimation of
orientation is possible
while agent is in recepti
field of place cell wanslational shif T tional shi
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Visual Place scale: 1 sc§le:$
navigation ‘ L
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correlation
correlation

® Correlation with
actively shifted
memory views
decays spatially in
way that reflects
how distal the

view is.... place
field..
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Integration by an attractor dynamics

B every sensory estimate
contributes a “force-let”
to a dynamical system e -
whose attractor is the | |
estimate of ego-position

® for vision: space to rate
code... removes the R VP g
problem of normalization | =

x1 x2
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Recalibration
from instability

B with visual match, a
strong attractor
force-let induces
instability in which
the estimate gets
reset to the visually
specified estimate

B which resets the
dead-reckoned
estimate as well

X dr
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Integrating it all: dynamics all the




a reset event
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Further development:

B complex behavioral organization

B robotic implementation



Autonomous behavioral organization

® neural dynamics organizes sequence of
behaviors...
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Autonomous behavioral organization

M neural dynamics organizes sequence of behaviors...
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How neurally realistic is this!?



Neural mechanisms of navigation

B neural representation of path integration
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[McNaughton et al., Nature reviews neuroscience 2006]



Heading direction

B Neural evidence for head-orientation
cells... that function as heading
direction representation

® Neural attractor dynamics (neural
field) for heading direction

b 90

180

270

[McNaughton et al., Nature reviews neuroscience 2006]



Place and grid cells

B neural representation of location in
Hippocampus and Entorhinal Cortex

[McNaughton et al.,
Nature reviews
neuroscience 2006]

6 Hz



Place and grid cells

M support building a place representation by a
neural field

[McNaughton et al.,
Nature reviews
neuroscience 2006]



Neural dynamics of
path integration
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[McNaughton et al., Nature reviews neuroscience 2006]



Neural dynamics of
path integration

[McNaughton et al., Nature reviews neuroscience 2006]



Neurally inspired

B RAT-Slam
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Associations

Local View — Experience
Map Associations

Xy wrapping
connectivity

Pose Cell — Experience

Map Associations
Pose Cells
0 wrapping connectivity
0,
4
<

sensor_msgs::ImageCompressed
(overimage_transport)

Sensor / bagfile

—
/
I
I
N .‘. nav_msgs:: | I
E E lOdometIy |
Visual Odometry ;""""""l
: I
*eassssssssssssssssaannnnns®
I
I
I
I
I
\
~

[Ball, Wyeth, Cork, Milford, 201 3]

Pose Cell Network

ratslam_ros::
TopologicalAction

Experience Map

technical solution
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RAT-Slam

Vision via
webcam
Local Communication

via speakers and
microphone

Avoidance via
IR sensors

Local control
via LCD and

Brain via x86 PC
navpad

1GHz CPU (RoBoard)

istributed
ntelligence via
VLAN antenna

Mobility via
wheels (over
1.5m/s)

itrol via OS and Energy via
ver-Stage and X Battery (2 hours
> (Windows or continuous use)

1X) (b)

[Ball, Wyeth, Cork, Milford, 201 3]



RAT-Slam
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RAT-Slam
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[Ball, Wyeth, Cork, Milford, 201 3]



Event-based place recognition

M spiking neural vision system...

Reference GT Reference match

Ensemble matrix

1 7=20

7=30

r i i 7=50
N=6

pa i

Fig. 8: Example matches of the ensemble and ground- truth (GT) matches
on the DDD-17 dataset. Top two rows: success cases where the majority of

Query images Individual distance matrices individual methods failed. Bottom two rows: failure cases.

[Fischer Mildord, 2020]



Neuromorphic head-direction
estimate

B using DFT

— " Excitatory Synapse
— Inhibitory Synapse

---+ Plastic Synapse

(O Inactive Neuron

O Active Neuron

o O
GHD RHD IHD Shift CHD

U éPitch

[Kreiser et al. Sandamirskaya, Frontiers 2019]



Neuromorphic head-direction
estimate

M using DFT

—— Fiducial Trajectory

[Kreiser et al. Sandamirskaya, Frontiers 2019]



Conclusions

M the navigation problem entails both knowing
where you are and how to go places

M navigation can be performed by behavioral
and neural dynamics

B recalibration of location based on
recognition ... can be view-based

M integration by (neural) dynamics ... in which
space-time continuous processes... lead to
discrete transitions at instabilities



