Timing, coordination

Gregor Schöner

In vehicle motion planning

\square movement is generated through a
"behavioral dynamics" that is in closed loop with the environment
\square taking into account (possibly time varying) constraints from the perceived environment
\square time to reach the target was not a constraint.. and not controlled/stabilized

Reaching movements of an arm

\square reaching movements may be generated in open loop.. by an internal "neural" dynamics
generate movements that are "timed", that is,
\square they arrive "on time"
the are coordinated across different effectors
\square the are coordinated with moving objects (e.g., catching)
timing implies some form of anticipation...

How is timing done in conventional robotics?

© conventional motion planning:
compute/design the movement plan, parameterized by a path variable
\square then rescale that path variable to generate a desired timing profile
which the robotic controller must track

Conventional robotic timing

\square paths may be planned in joint or end-effector space

[Lynch, Park, 2017 (Chapter 9)]

Conventional robotic timing

paths are more generally planned in the space of robot arm reconfigurations "screws"

[Lynch, Park, 2017 (Chapter 9)]

Conventional robotic timing

time scaling

$$
s(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} .
$$

$$
X(s)=X_{\text {start }}+s\left(X_{\text {end }}-X_{\text {start }}\right), s \in[0,1] .
$$

$$
\theta(s)=\theta_{\text {start }}+s\left(\theta_{\text {end }}-\theta_{\text {start }}\right),
$$

- compute parameters to achieve a particular movement time T , with zero velocity at target
[Lynch, Park, 2017 (Chapter 9)]

Conventional robotic timing

time scaling: 5th order polynomial

- compute parameters to achieve a particular movement time T, with zero velocity and zero acceleration at target
[Lynch, Park, 2017 (Chapter 9)]

Conventional robotic timing

\square time scaling: ramps

Figure 9.5: Plots of $s(t)$ and $\dot{s}(t)$ for a trapezoidal motion profile.
time scaling: smoothed ramps

[Lynch, Park, 2017 (Chapter 9)]

Conventional robotic timing

\square time scaling: taking limits on acceleration into account

How is timing done in autonomous robotics?

\square all of these methods require detailed models of the task and make demands on the control system... to guarantee soft arrival....
\square in autonomous robotics: use more robust heuristics

Timing in autonomous robotics

Koditschek's juggling robot:
physical dynamics of bouncing ball modeled... state estimated based on vision, actuator inserts a perturbation so that a periodic solution (limit cycle) results
\square ball is kept within reach by conventional P control from contact

Timing in autonomous robotics

Raibert's hopping robots
\square dynamics bouncing robot modeled... actuator inserts a term into that dynamics so that a periodic solution (limit cycle) results
robot is kept upright by controlling leg angle to achieve particular horizontal position for Center of Mass

Generalization to bipedal/ quadrupedal locomotion

\square template...oscillator at macro-level..
■ anchor... kinematics at joint/actuator level
[Full Koditschek 99]

Timing in autonomous robotics

Raibert's bio-dog
\square expand that idea to coordination among limbs

- => technical variant

Timing in autonomous robotics

https://www.youtube.com/ watch? $\mathrm{v}=\mathrm{M8YjvHYbZ9w}$

Some ideas from human movement

timing
\square absolute vs relative timing
\square coordination
■ coupled oscillators

Relative vs. absolute timing

relative phase=DT/T

Absolute timing

examples: music, prediction, estimating time
typical task: tapping

- self-paced vs. externally paced

Human performance

■on absolute timing is impressive
\square smaller variance than 5% of cycle time in continuation paradigm

[Wing, 1980]

Theoretical account for absolute timing

■ (neural) oscillator autonomously generates timing signal, from which timing events emerge

■ => limit cycle oscillators
■ = clocks

Limit cycle oscillator: Hopf

normal form

$$
\left.\begin{array}{l}
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
\alpha & -\omega \\
\omega & \alpha
\end{array}\right)\binom{x}{y}-\left(x^{2}+y^{2}\right)\binom{x}{y} \\
x=r \cos (\phi) \\
y=r \sin (\phi)
\end{array} \dot{r}=\alpha r-r^{3}\right)
$$

$$
\begin{aligned}
& x(t)=\sqrt{\alpha} \sin (\omega t) \\
& \text { amplitude } A=\sqrt{\alpha} \\
& \text { cycle time } T=2 \pi / \omega
\end{aligned}
$$

Neural oscillator

relaxation oscillator

$$
\begin{aligned}
\tau \dot{u} & =-u+h_{u}+w_{u u} f(u)-w_{u v} f(v) \\
\tau \dot{v} & =-v+h_{v}+w_{v u} f(u)
\end{aligned}
$$

[Amari 77]

Neural oscillator

 accounts for variance of absolute timing

[Schöner 2002]

Relative timing: movement coordination

locomotion, interlimb and intralimb
speaking
mastication
music production

- ... approximately rhythmic

Examples of coordination of temporally discrete acts:

reaching and grasping

- bimanual manipulation
coordination among fingers during grasp
- catching, intercepting

Definition of coordination

- Coordination is the maintenance of stable timing relationships between components of voluntary movement.
\square Operationalization: recovery of coordination after perturbations
- Example: speech articulatory work (Gracco, Abbs, 84; Kelso et al, 84)

Example: action-perception patterns

Is movement always timed/ coordinated?

- No, for example:
- locomotion: whole body displacement in the plane
\square in the presence of obstacles takes longer
\square delay does not lead to compensatory acceleration
- but coordination is pervasive...
e.g., coordinating grasp with reach

Two basic patterns of coordination

- in-phase
\square synchronization, moving through like phases simultaneously
e.g., gallop (approximately)
- anti-phase or phase alternation
\square syncopation
e.g., trott

An instability in rhythmic movement coordination

- switch from anti-phase to in-phase as rhythm gets faster

Instability

- experiment involves finger movement
\square no mechanical coupling
\square constraint of maximal frequency irrelevant
$\square=>$ pure neurallly based coordination

Schöner, Kelso (Science, 1988)

Instability

- frequency imposed by metronomes and varied in steps
either start out in-phase or antiphase

A. TIME SERIES

B. CyCle estimate of relative phase

Measures of stability

variance: fluctuations in time are an index of degree of stability
\square stochastic perturbations drive system away from the coordinated movement
\square the less resistance to such perturbations, the larger the variance

Measures of stability

\square relaxation time

time need to recover from an outside perturbation
e.g., mechanically perturb one of the limbs, so that relative phase moves away from the mean value, then look how long it takes to go back to the mean pattern
the less stable, the longer relaxation time
data example perturbation of fingers and relative phase

Scholz, Kelso, Schöner, I987
 RF 200\%

Signatures of instability

loss of stability indexed by measures of stability

relaxation times, individual data

data (averaged across subjects)
Schöner, Kelso (Science, 1988)

Neuronal process for coordination

- each component is driven by a neuronal oscillator
their excitatory coupling leads to inphase
their inhibitory coupling leads to anti-phase

Coordination from coupling

- coordination=stable relative timing emerges from coupling of neural oscillators

$$
\begin{aligned}
& \tau \dot{u}_{1}=-u_{1}+h_{u}+w_{u u} f\left(u_{1}\right)-w_{u v} f\left(v_{1}\right) \\
& \tau \dot{v}_{1}=-v_{1}+h_{v}+w_{v u} f\left(u_{1}\right)+c f\left(u_{2}\right) \\
& \tau \dot{u}_{2}=-u_{2}+h_{u}+w_{u u} f\left(u_{2}\right)-w_{u v} f\left(v_{2}\right) \\
& \tau \dot{v}_{2}=-v_{2}+h_{v}+w_{v u} f\left(u_{2}\right)+c f\left(u_{1}\right)
\end{aligned}
$$

[Schöner:Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:3I-5I (2002)]

Movement timing

\square marginal stability of phase enables stabilizing relative timing while keeping trajectory unaffected

[Schöner:Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:3I-5I (2002)]

Dynamical systems account of instability

\square at
increasing frequency stability of anti-phase is lost

Predicts increase in variance

"critical

rate of change of relative phase
 fluctuations"

Predicts increase in relaxation time

=> coordination from coupled oscillators

- observation of the predicted signatures of instability are a major source of evidence for the notion that coupled oscillators are the basis of coordination...

Learn from these ideas for robotics?

timed reaching that stabilizes timing in response to perturbations

Timed movement to intercept ball

timing from an oscillator
$\binom{\dot{x}}{\dot{y}}=-5\left|u_{\text {init }}\right|\binom{x-x_{\text {init }}}{y}+\left|u_{\text {hopf }}\right| \mathbf{f}_{\text {hopf }}-5\left|u_{\text {final }}\right|\binom{x-x_{\text {final }}}{y}+\mathrm{gwn}$
$\mathbf{f}_{\text {hopf }}=\left(\begin{array}{cc}2.5 & -\omega \\ \omega & 2.5\end{array}\right)\binom{x}{y}-2.5\left(x^{2}+y^{2}\right)\binom{x}{y}$
$x(t)=\sin (\omega t)$
[Schöner, Santos, 200I]

the oscillator is turned on and off for a single cycle

$$
\begin{aligned}
& \binom{\dot{x}}{\dot{y}}=-5\left|u_{\mathrm{init}}\right|\binom{x-x_{\mathrm{init}}}{y}+\left|u_{\mathrm{hopf}}\right| \mathbf{f}_{\mathrm{hopf}}-5\left|u_{\mathrm{final}}\right|\binom{x-x_{\mathrm{final}}}{y}+\mathrm{gwn} \\
& \alpha \dot{u}_{\mathrm{init}}=\mu_{\mathrm{init}} u_{\mathrm{init}}-\left|\mu_{\mathrm{init}}\right| u_{\mathrm{init}}^{3}-2.1\left(u_{\mathrm{final}}^{2}+u_{\mathrm{hopf}}^{2}\right) u_{\mathrm{init}}+\mathrm{gwn} \\
& \alpha \dot{u}_{\mathrm{hopf}}=\mu_{\mathrm{hopf}} u_{\mathrm{hopf}}-\left|\mu_{\mathrm{hopf}}\right| u_{\mathrm{hopf}}^{3}-2.1\left(u_{\mathrm{init}}^{2}+u_{\mathrm{final}}^{2}\right) u_{\mathrm{hopf}}+\mathrm{gwn} \\
& \alpha \dot{u}_{\mathrm{final}}=\mu_{\text {final }} u_{\mathrm{final}}-\left|\mu_{\mathrm{final}}\right| u_{\mathrm{final}}^{3}-2.1\left(u_{\mathrm{init}}^{2}+u_{\mathrm{hopf}}^{2}\right) u_{\mathrm{final}}+\mathrm{gwn}
\end{aligned}
$$

[Schöner, Santos, 200I]

[Schöner, Santos, 200I]

Timed movement to intercept ball turn oscillator on in response to detected ball at right time to contact

Compensating for lost time

\square plan to reach target at fixed time
recover time as obstacle forces longer path

[Tuma, lossifidis, Schöner, ICRA 2009]

Compensating for lost time

[Tuma, lossifidis, Schöner, ICRA 2009]

Catching

(1) Object trajectory

[Kim, Shukla, Billard, 2014]

Fig. 2. Block diagram for robotic catching.

[Kim, Shukla, Billard, 2014]

■coupled dynamical systems approach

[Shukla, Billard, 20I2]

video

■https://youtu.be/M4I3ILWvrbl?t=3

Timing and behavioral organization

\square sequences of timed actions to intercept ball

[Oubatti, Richter, Schöner, 2013]

Timing and behavioral organization

- timing from oscillator, whose cycle time is adjusted to perceived time to contact

$$
\tau\binom{\dot{x}}{\dot{y}}=-c_{\mathrm{post}} a\binom{x-x_{\mathrm{post}}}{y}+c_{\mathrm{hopf}} H(x, y)+\eta,
$$

$$
\begin{aligned}
H(x, y) & =\left(\begin{array}{cc}
\lambda & -\omega \\
\omega & \lambda
\end{array}\right)\binom{x-r-x_{\text {init }}}{y} \\
& -\left(\left(x-r-x_{\text {init }}\right)^{2}+y^{2}\right)\binom{x-r-x_{\text {init }}}{y}
\end{aligned}
$$

$$
\frac{T}{2 d_{\mathrm{init}}}=\frac{t_{\mathrm{tim}}}{d(t)}
$$

[Oubatti, Richter, Schöner, 20I3]

Timing and behavioral organization

- coupled neural dynamics to organize the sequence

[Oubatti, Richter, Schöner, 2013]

[Oubbati, Richter, Schöner, 2013]

Timed movement with online updating [Faroud Oubatti]

[Oubbati, Richter, Schöner, 20I3]

Timing and reorganization of movement

Conclusion

\square timing in autonomous robotics is best framed as a problem of stable oscillators and their coupling

Conclusion

timing is linked to many problems

\square arriving "just in time", estimating time to contact
\square on line updating: planning and timing tightly connected

\square timed movement sequences: behavioral organization
\square coordinating timing across movements, coarticulation
\square timing and control

