Motor control
 Gregor Schöner

Motor control

\square is about the processes of bringing about the physical movement of an arm (robot or human)
this entails
the mechanical dynamics of an arm
\square control principles
actuators

Resources

- R M Murray, Z Li, S S. Sastry:A mathematical introduction to robotic manipulation. CRC Press, 1994

■ M Lynch, F C Park: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, 2017

- online version of both available...

Newton's law

\square for a mass, m , described by a variable, x , in an inertial frame: $m \ddot{x}=f(x, t)$ where f is a force in non-inertial frames, e.g. rotating or accelerating frames:
\square centripetal forces
\square Coriolis forces

Rigid bodies: constraints

\square constraints reduce the effective numbers of degrees of freedom...

$$
\begin{aligned}
& F_{i}=m_{i} \ddot{r}_{i} \quad r_{i} \in \mathbb{R}^{3}, i=1, \ldots, n . \\
& g_{j}\left(r_{1}, \ldots, r_{n}\right)=0 \quad j=1, \ldots, k .
\end{aligned}
$$

Rigid bodies: constraints

- generalized coordinates capture the remaining, free degrees of freedom

$$
\begin{gathered}
r_{i}=f_{i}\left(q_{1}, \ldots, q_{m}\right) \\
i=1, \ldots, n
\end{gathered}
$$

$$
\begin{gathered}
g_{j}\left(r_{1}, \ldots, r_{n}\right)=0 \\
j=1, \ldots, k .
\end{gathered}
$$

Lagrangian mechanics

- The Lagrangian framework makes it possible to capture dynamics in generalized coordinates that reflect constraints $\quad L(q, \dot{q})=T(q, \dot{q})-V(q)$,
\square Lagrange function $L=$ kineticpotential energy

Lagrangian mechanics

Least action principle:The integral of L over time $=$ action is minimal $\delta A=\delta \int L(q, \dot{q}, t) d t=0$
[Murray, Sastry, Li, 94]

Euler-Lagrange equation

$\square^{-} A=\int\left(\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right) d t=0$
\square with $\delta \dot{q}=d \delta q / d t$
\square and with partial integration
$\square^{\square} \delta A=\left[\frac{\partial L}{\partial \dot{q}} \delta q\right]+\int\left(\frac{\partial L}{\partial q}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}\right) \delta q d t=0$
\square first term vanishes: no variation at start/end points

Euler-Lagrange equation

$\square=>\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=0$
■ ...plus generalized external forces, γ
$\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\gamma$
\square in component form:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=\Upsilon_{i} \quad i=1, \ldots, m
$$

Example: pendulum

generalized coordinates: θ, ϕ

$$
T=\frac{1}{2} m l^{2}\|\dot{r}\|^{2}=\frac{1}{2} m l^{2}\left(\dot{\theta}^{2}+\left(1-\cos ^{2} \theta\right) \dot{\phi}^{2}\right)
$$

$$
V=-m g l \cos \theta,
$$

$$
L(q, \dot{q})=\frac{1}{2} m l^{2}\left(\dot{\theta}^{2}+\left(1-\cos ^{2} \theta\right) \dot{\phi}^{2}\right)+m g l \cos \theta
$$

Example: pendulum

$$
\begin{aligned}
\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}} & =\frac{d}{d t}\left(m l^{2} \dot{\theta}\right)=m l^{2} \ddot{\theta} \\
\frac{\partial L}{\partial \theta} & =m l^{2} \sin \theta \cos \theta \dot{\phi}^{2}-m g l \sin \theta \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{\phi}} & =\frac{d}{d t}\left(m l^{2} \sin ^{2} \theta \dot{\phi}\right)=m l^{2} \sin ^{2} \theta \ddot{\phi}+2 m l^{2} \sin \theta \cos \theta \dot{\theta} \dot{\phi} \\
\frac{\partial L}{\partial \phi} & =0
\end{aligned}
$$

$\left[\begin{array}{cc}m l^{2} & 0 \\ 0 & m l^{2} \sin ^{2} \theta\end{array}\right]\left[\begin{array}{c}\ddot{\theta} \\ \ddot{\phi}\end{array}\right]+\left[\begin{array}{c}-m l^{2} \sin \theta \cos \theta \dot{\phi}^{2} \\ 2 m l^{2} \sin \theta \cos \theta \dot{\theta} \dot{\phi}\end{array}\right]+\left[\begin{array}{c}m g l \sin \theta \\ 0\end{array}\right]=0$.
inertial

centrifugal (Coriolis)

gravitational

Example: two-link planar robot

\square generalized coordinates: θ_{1}, θ_{2}
$\square T(\theta, \dot{\theta})=\frac{1}{2} m_{1}\left(\dot{\bar{x}}_{1}^{2}+\dot{y}_{1}^{2}\right)+\frac{1}{2} \mathcal{I}_{z 1} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2}\left(\dot{\bar{x}}_{2}^{2}+\dot{\bar{y}}_{2}^{2}\right)+\frac{1}{2} \mathcal{I}_{z 2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}$ $=\frac{1}{2}\left[\begin{array}{l}\dot{\theta}_{1} \\ \dot{\theta}_{2}\end{array}\right]^{T}\left[\begin{array}{cc}\alpha+2 \beta c_{2} & \delta+\beta c_{2} \\ \delta+\beta c_{2} & \delta\end{array}\right]\left[\begin{array}{l}\dot{\theta}_{1} \\ \dot{\theta}_{2}\end{array}\right]$,
\square where $s_{i}=\sin \left(\theta_{i}\right), c_{i}=\cos \left(\theta_{i}\right)$

$$
\left[\begin{array}{cc}
\alpha+2 \beta c_{2} & \delta+\beta c_{2} \\
\delta+\beta c_{2} & \delta
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
-\beta s_{2} \dot{\theta}_{2} & -\beta s_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
\beta s_{2} \dot{\theta}_{1} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{l}
\tau_{1} \\
\tau_{2}
\end{array}\right]
$$

inertial
centrifugal/Coriolis

Open-chain manipulator

$M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta, \dot{\theta})=\tau$
inertial
centrifugal/ Coriolis
$\begin{array}{ll}\text { gravitational } & \begin{array}{c}\text { active } \\ \text { torques }\end{array}\end{array}$

Control systems

robotic motion as a special case of control

[Dorf, Bischop, 20I I]

Control systems

$$
\dot{x}=f(t, x, u)
$$

$$
y=\eta(t, x, u)
$$

\square state of process/actuator x
■ output, y
\square control signal, u
[Dorf, Bischop, 201I]

Control systems

$$
\dot{x}=f(t, x, u) \quad y=\eta(t, x, u)
$$

\square control law: u as a function of y (or \hat{y}), desired response, y_{d}
disturbances modeled stochastically
[Dorf, Bischop, 201I]

Robotic control

(a)
[Lunch, Park, 2017]

Robotic control

position feedback

voltage
[Lunch, Park, 20I7]

Robotic control

\square actuators enable commanding a torque by commanding a current... in good approximation

■ => control signal: torque

[Lunch, Park, 20I7]

Robotic control

$\square \dot{x}=f(t, x, u)$
\square state variable $x(t)=$ output: kinematic state of robot
desired trajectory: $x_{d}(t)$ (from motion planning)
\square control signal: u = torques

[Lunch, Park, 20I7]

Robotic control

theoretical core of robotic control theory:
\square devise control laws that lead to stable control
\square (approximate these numerically on hardware and computers)

Robotic control

task: generate joint torques that produce a desired motion... $\theta_{d}(t)$
$\square<=>$ make error: $e(t)=\theta(t)-\theta_{d}(t)$ small

for a constant desired state
[Lunch, Park, 20I7]

Toy example

\square analysis by Eigenvalues s

overdamped $(\zeta>1) \quad$ critically damped $(\zeta=1) \quad$ underdamped $(\zeta<1)$

[Lunch, Park, 20I7]

Toy example

\square linear mass spring model $m \ddot{e}(t)+b \dot{e}(t)+k e(t)=0$

[Lunch, Park, 20I7]

Motion control single joint

$$
\tau=M \ddot{\theta}+m g r \cos (\theta)+b \dot{\theta}
$$

[Lunch, Park, 20I7]

Motion control single joint

$\square=M \ddot{\theta}+m g r \cos (\theta)+b \dot{\theta}$
\square feedback PID controller

$$
\tau=K_{p} \theta_{e}+K_{d} \dot{\theta}_{e}+K_{i} \int \theta\left(t^{\prime}\right) d t^{\prime}
$$

Figure 11.12: Block diagram of a PID controller.
[Lunch, Park, 20I7]

Motion control single joint

$\tau=M \ddot{\theta}+m g r \cos (\theta)+b \dot{\theta}$
\square feedback PID controller
$\tau=K_{p} \theta_{e}+K_{d} \dot{\theta}_{e}+K_{i} \int \theta\left(t^{\prime}\right) d t^{\prime}$

[Lunch, Park, 20I7]

Motion control single joint

$\tau=M \ddot{\theta}+m g r \cos (\theta)+b \dot{\theta}=M \ddot{\theta}+h(\theta, \dot{\theta})$
\square feedforward controller
\square has model of the dynamics:
$\tau=\tilde{M} \ddot{\theta}+\tilde{h}(\theta, \dot{\theta})$
■ compute forward torque
$\square \tau(t)=\tilde{M}\left(\theta_{d}(t)\right) \ddot{\theta}_{d}(t)+\tilde{h}\left(\theta_{d}, \dot{\theta}_{d}\right)$
if model exact: $\ddot{\theta} \approx \ddot{\theta}_{d}$

Motion control single joint

\square feedforward controller

- if model wrong..

Figure 11.17: Results of feedforward control with an incorrect model: $\tilde{r}=0.08 \mathrm{~m}$, but $r=0.1 \mathrm{~m}$. The desired trajectory in Task 1 is $\theta_{d}(t)=-\pi / 2-(\pi / 4) \cos (t)$ for $0 \leq t \leq \pi$. The desired trajectory for Task 2 is $\theta_{d}(t)=\pi / 2-(\pi / 4) \cos (t), 0 \leq t \leq \pi$.
[Lunch, Park, 20I7]

Motion control single joint

\square combined feedforward and feedback PID controller ...
$\tau=\tilde{M}(\theta)\left(\ddot{\theta}_{d}+K_{p} \theta_{e}+K_{d} \dot{\theta}_{e}+K_{i} \int \theta\left(t^{\prime}\right) d t^{\prime}\right)+\tilde{h}(\theta, \dot{\theta})$
\square = inverse dynamics or computed torque controller
[Lunch, Park, 20I7]

Control of multi-joint arm

generate joint torques that produce a desired motion... θ_{d}
\square error $\theta_{e}=\theta-\theta_{d}$
$\square \mathrm{PD}$ control $\tau=K_{p} \theta_{e}+K_{e} \dot{\theta}_{d}+K_{i} \int \theta_{e}\left(t^{\prime}\right) d t^{\prime}$
-> controlling joints independently

$$
M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta, \dot{\theta})=\tau
$$

Control of multi-joint arm

\square there are many more sophisticated models that compensate for interaction torques/ inertial coupling... e.g. computed torque control (inverse dynamics)

$$
\tau=\underbrace{M(\theta) \ddot{\theta}_{d}+C \dot{\theta}+N}_{\tau_{\mathrm{ff}}}+\underbrace{M(\theta)\left(-K_{v} \dot{e}-K_{p} e\right)}_{\tau_{\mathrm{fb}}} .
$$

$$
M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta, \dot{\theta})=\tau
$$

$$
\Rightarrow \quad\left(\ddot{\theta}-\ddot{\theta}_{d}\right)=\ddot{e}=-K_{v} \dot{e}-K_{p} e
$$

Control of multi-joint arm

■... computed torque control (inverse dynamics)
but: computational effort can be considerable... simplification.. only compensate for gravity...
$\tau=K_{p} \theta_{e}+K_{e} \dot{\theta}_{d}+K_{i} \int \theta_{e}\left(t^{\prime}\right) d t^{\prime}+\tilde{N}(\theta)$

$$
M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta, \dot{\theta})=\tau
$$

Problem: contact forces

as soon as the robot arm makes contact, a host of problems arise from the contact forces and their effect on the arm and controller...
need compliance... resisting to a welldefined degree
\square => impedance control... research frontier

Impedance

to control movement well.. need a very stiff arm and "stiff" controller (high gain K_x)
\square to control force/limit force (e.g. for interaction with surfaces or humans) you need a relatively soft arm and soft controller
design system to give hand, \mathbf{x}, a desired impedance: $\mathrm{m}, \mathrm{b}, \mathrm{k}$ in
$\square m \ddot{x}+b \dot{x}+k x=f$
where f is force applied..

Operational space formulation

\square Euler-Langrage in end-effector space

$$
\Lambda(x) \ddot{x}+\mu(x, \dot{x})+p(x)=F
$$

\square with F forces acting on the end-effector
\square equivalent dynamics in joint space

$$
A(q) \ddot{q}+b(q, \dot{q})+g(q)=\Gamma
$$

with joint torques $\quad \Gamma=J^{T}(\boldsymbol{q}) \boldsymbol{F}$
[Khatib, I 987]

Impedance control

■Hogan 1985...

$$
\tau=J^{T}(\theta)(\tilde{\Lambda}(\theta) \ddot{x}+\tilde{\eta}(\theta, \dot{x})-(M \ddot{x}+B \dot{x}+K x))
$$

Link to movement planning

Where does "desired trajectory" come from?
\square typically from end-effector level movement planning
\square then add an inverse kinematic...
\square which can be problematic
\square alternative: planning and control in endeffector space

Operational space formulation

\square in end-effector space add constraints as contributions to the "virtual forces"

$$
\begin{aligned}
\mathrm{F}_{\mathbf{x}_{d}}^{*} & -\operatorname{grad}\left[U_{\mathrm{x}_{d}}(\mathrm{x})\right], \\
\mathrm{F}_{O}^{*} & =-\operatorname{grad}\left[U_{o}(\mathrm{x})\right] .
\end{aligned}
$$

$$
\Lambda(x) \ddot{x}+\mu(x, \dot{x})+p(x)=F
$$

[Khatib, I986, 1987]

Optimal control

\square given a plant $\dot{x}=f(x, u)$
\square find a control signal $u(t)$
\square that moves the state from an final position $x_{i}(0)$ to a terminal position $x_{f}\left(t_{f}\right)$ within the time t_{f}
a (difficult) planning problem!
\square minimize a cost function to find such a signal

How does the human (or other animal) movement system generate movement?

- mechanics:... biomechanics
\square actuator: muscle
\square control? feedback loops

