
Lab class: Autonomous robotics

Software information

Institut für Neuroinformatik

August 14 - 18, 2023

1 Installing the Software

1.1 Getting Webots

For this course, we will be using the Webots 3D robot simulation environ-
ment. It can be obtained at

https://cyberbotics.com/#download

Install it by following the instructions at
https://cyberbotics.com/doc/guide/installing-webots

A more extensive tutorial then is provided here can be found at
https://cyberbotics.com/doc/guide/getting-started-with-webots

and a technical documentation of the software at
https://cyberbotics.com/doc/reference/nodes-and-api-functions

1.2 Getting Python

For this course, we will use the Python programming language.1 If you
haven't already installed python there are many tutorials on the internet ex-
plain how to do this in detail. If you are a Windows user the most straight-
forward way is likely to use the python package in the Microsoft Store.

If Webots has problems to �nd python after the installation, check whether
Tools→Preferences→Python command points to your installation di-
rectory, something like "C:\Program Files\Python39\python".

1https://www.python.org/downloads/

1

https://cyberbotics.com/#download
https://cyberbotics.com/doc/guide/installing-webots
https://cyberbotics.com/doc/guide/getting-started-with-webots
https://cyberbotics.com/doc/reference/nodes-and-api-functions
https://www.python.org/downloads/

2 Details on Webots

2.1 The World

Webots is organized around the scene tree at the left side of the window which
contains a complete description of the simulated environment. Each scene
tree starts with a WorldInfo and a Viewpoint node. The former contains
global information like the strength of gravity or the friction parameters
between materials. It also holds the basicTimeStep �eld that determines the
length of each step in the physics simulation. The Viewpoint meanwhile has
information about the camera position and whether to follow a certain robot
while it moves.

Other nodes that are usually found are the TexturedBackground and the
TexturedBackgroundLight which provide a more complex environment and
the RectangleArena which describes the ground the robot moves on. New
nodes can be added to the scene tree via the button at the top of the
window.

Some important types of nodes are:

Group A simple type of node that contains several child nodes.

Transform This node rotates and moves its children.

Solid Most physical objects are represented by a solid node. This type
of node has a �eld boundingObject which describes the shape used
by the collision detection. The �eld physics indicates, whether the
solid is moved by external forces like collisions.

Shape A Solid requires a Shape to be properly represented in the phys-
ical world. This shape consist of a Geometry that dictates the
actual form the Solid takes and an Appearance that determines
its color and texture.

2

Robot A Robot is represented by a collection of Solids connected by
(motorized) Hinges. It further contains the �eld controller which
speci�es the program that determines its behavior. We will ex-
clusively use the E-Puck robots which come prepackaged with
Webots and only needs to have a controller build and assigned.
Note, that the E-Puck also comes in two slightly di�erent ver-
sions. We will be using version 1.

2.2 The controller

Once the world is loaded and the simulation begins the robot starts the
controller that is speci�ed in the controller -�eld. Webots supports controllers
written in C, C++, java, python, and Matlab. In this course, we will use
python.

One can create a new controller by using the �eld New Robot con-

troller underWizards, but we already provide template project �les, where
you will �ll in your code.

Since the editor provided in Webots is rather rudimentary it is advisable
to use an external editor of choice.

To understand how a controller works consider this minimal example:

from c o n t r o l l e r import Robot

robot = Robot ()
t imestep = int (robot . getBasicTimeStep ())

motor = robot . getDevice ('motorname ')

ds = robot . getDevice (' distance_sensor_name ')
ds . enable (t imestep)

while robot . s tep (t imestep) != =1:
va l = ds . getValue ()
Process sensor data here .

motor . s e tPo s i t i o n (1 0 . 0)

The �rst step is always importing the Robot module from the controller
library to have the tools to "talk" to Webots. Then one needs to instantiate
the robot object. If there is only one Robot in the world it does not need

3

to be speci�ed. The line following this one extracts the time that passes in
each simulation step. Usually, this value equals 32ms and it is required to
initialize sensors and computing controller steps.

Next, we need to create handles for all the devices we will use. For this,
we use the getDevice() function with the device name in the argument. Note
that the name is di�erent from the DEF you see in the scene tree and can
be found in the name-�eld of the device. Sensors additionally need to be
enabled by passing them the timestep-variable.

Now starts the actual work. Each time robot.step(timestep) is invoked,
the simulation progresses one timestep and returns a value denoting the
successful execution of the step. Progression of the simulation creates new
sensor readings and applies motor commands. Therefore this function is
usually called in a while-loop, to retrieve new sensor readings and issue new
motor commands each timestep. Note that you can also use other loops if
you just want to issue a �xed series of commands.

The motors can be controlled in three di�erent ways, by specifying either
the desired position, velocity, or torque (or force for linear motors). While
the minimal example above uses the position control mode we will mostly
use the velocity control mode. To do so we need to include the line

motor . s e tPo s i t i o n (f l o a t ('+ in f '))

once directly after initializing the motor device and use

motor . s e tVe l o c i t y (v)

in the main loop to set the velocity to the value v.

2.3 List of relevant controller commands

Robot() returns a handle to the robot

int(robot.getBasicTimeStep()) gets the current time step of the world

robot.step(timestep) synchronizes the sensor and actuator data
between Webots and the controllers and
advances the simulation by one step. Must
be used in every controller.

4

robot.getDevice("left wheel

motor")

returns a handle to the left motor (analo-
gous for right motor)

motor.setVelocity(vel) sets the velocity of the motor in radians
per second

robot.getDevice("left wheel

sensor")

returns a handle to the left wheel encoder
(analogous for right)

robot.getDevice("ps"+str(i)) returns a handle to the i-th infrared sen-
sor, starting from i=0 for IR1

sensor.enable(timestep) enables the sensor (proximity sensor or
wheel encoder) for the current time step,
which is required for reading out values

sensor.getValue() reads out the value of the sensor

2.4 Bluetooth Connection

Webots can connect to a real e-puck using bluetooth. Each e-puck is paired
with a speci�c PC in the robotics lab. To establish a connection, it is neces-
sary to provide Webots the communication port to the e-puck. To do this,
open a terminal window (Ctr+Alt+t), enter "export WEBOTS_COM1=/dev/rfcomm0"
and execute webots from terminal. In Webots, open a world containing a e-
puck robot. Right click on the robot and open the robot window. A Browser
window should open up displaying a picture of the e-puck, sensor readings
as well as a drop down menu at the top left. Chose the "/dev/rfcomm0" �le
from the drop down menu. Webots should now switch control to the real
e-puck.

If the connection failed, check if the robot id matches the one indicated
on the PC. Also check if the port forwarded to Webots exists by running
the "rfcomm" command in the terminal and if the e-puck is listed in the
bluetooth device manager. For more information, check the online documen-
tation:
https://cyberbotics.com/doc/guide/epuck#bluetooth-setups

5

https://cyberbotics.com/doc/guide/epuck#bluetooth-setups

https://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#

Connecting_to_the_Bluetooth

6

https://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Connecting_to_the_Bluetooth
https://www.gctronic.com/doc/index.php?title=e-puck2_PC_side_development#Connecting_to_the_Bluetooth

	Installing the Software
	Getting Webots
	Getting Python

	Details on Webots
	The World
	The controller
	List of relevant controller commands
	Bluetooth Connection

