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Introduction

experimental evidence is at the core of 
science

=> understanding better how “experiment” 
works may be important/interesting to all of 
us, even those of us who work primarily 
theoretically or in a technical setting



Introduction

Today will provide tutorials on experimental 
design, and statistics

Tomorrow you will run behavioral 
experiments and analyze them 

Wednesday we’ll discuss these and the 
interrelation between theory experiment 
and theory



No experiment without theory 

there is no such thing as a theory-free or 
“neutral” description of natural phenomena

the concepts we use to describe and characterize natural 
phenomena express theoretical commitments

Karl Popper: experimental evidence is about 
hypothesis testing… 

hypotheses may be rejected… but never proven

not all hypotheses are theoretically strong… 

stronger when linked (by theory) to a networks of other 
hypotheses …



Human decision making …

“whom to marry”, “which phone to buy”,… 
everything in life involves decisions… 

=> behavioral economics 

happens to be an area of unsettling incidents 
about scientific fraud right now: 

https://www.theatlantic.com/science/archive/
2023/08/gino-ariely-data-fraud-allegations/
674891/

=> good exemplary process to understand 
experimentation..

https://www.theatlantic.com/science/archive/2023/08/gino-ariely-data-fraud-allegations/674891/
https://www.theatlantic.com/science/archive/2023/08/gino-ariely-data-fraud-allegations/674891/
https://www.theatlantic.com/science/archive/2023/08/gino-ariely-data-fraud-allegations/674891/


Human decision making …

for our purposes… study decision making at 
a much lower level…



Saccades as “free choice” decisions

selecting a new saccadic location every 300 ms

Analysis of the eye movement trace may allow us to understand why
changes are so hard to detect and what is the origin of the difference between
the Central and Marginal Interest cases.

Eye Movement Measures

Figure 2 shows a typical eye movement scanning pattern for a picture. It is seen
that even though the observer was looking at the picture for 48 sec, and search-
ing actively for possible changes that might occur anywhere in the picture, the
eye continued to follow a surprisingly stereotyped, repetitive, scanpath in
which large areas of the picture are never directly fixated. Similar observations
were made by Yarbus (1967) and other authors, who observed that many por-
tions of a picture are never directly fixated, and that the particular scanpath that
is used depends on what the observer is looking for in the picture.

Could this be the reason why some changes are not noticed? Could it be that
those cases when the change is missed correspond to cases where the scanpath
happens not to include the change location? This hypothesis might explain the
difference between the MI and CI changes: Thus, it might be that MI locations,
being less “interesting” to observers, tend to be less likely to be included in the
scanpath than CI locations.

198 O’REGAN ET AL.

FIG. 2. Typical scanpath while a subject searched for changes. The original picture was in colour. The
change that occurred in this picture was a vertical displacement of the railing in the background to the
level of the man’ s eyes. In this record, the change was detected at the moment that the observer blinked
for the fourth time. The positions of the eye when the blinks occurred are shown as white circles. The
last, “effective” blink, marked “E”, occurred when the eye was in the region of the bar.

[O’Reagan et al., 2000]
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Human decision making …

=> input does not uniquely determine 
decisions… 

where cognition begins… 

but: in the lab, constrain the “free” choice



Reaction time (RT) paradigm

time
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RT paradigm
the “imperative” signal specifies what the “right” 
choice is 

the task set/priors specify what the alternatives are… 

e.g., how many choices. how likely each choice, how “easy” are 
perception or cognitive effort to select the “right” choice, 

e.g., semantics, knowledge, cognitive skills 

time

imperative 
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go signal

response

RT
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Theoretical framework 1: 
information processing

decision making based on information/certainty 

notion of “evidence accumulation”

which motivates scientific questions about 
information

e.g. the probability of choices

e.g. the priors of choices 

while what the choices are about (the 
“contents”) is not central to this framework 



Diffusion model

choices as boundaries along a decision dimension, 
with initial condition in between

=> Robert Schmidt will discuss how diffusion 
modeling can be used to analyze RT data 

PSYCHOLOGICAL SCIENCE 

Modeling Response Times 

commonality among random-walk and diffusion models, and similar- 
ities significantly outweigh differences. 

In the diffusion model, the accumulation of information that drives 
a decision begins from a starting point and continues until the total 
amount of accumulated information reaches either a positive response 
boundary or a negative response boundary. The response time for a 
decision is the time required to reach a decision boundary plus a con- 
stant encoding and response-execution time. The rate at which the 
process approaches a boundary, that is, the mean amount of informa- 
tion accumulated per unit of time, is called the drift rate, v. 

The accumulation of information is not constant over time, but 
instead varies. The variability is assumed to be normally distributed 
with standard deviation s, a parameter of the model. As a result of this 
variability, the accumulation process can end up at the wrong bound- 
ary. Figure la shows the diffusion process with the negative response 
boundary set at zero and the positive response boundary set at a (solid 
boundary lines in the figure), with the boundaries equal in distance 
from z, the starting point (z = a/2). The figure shows the paths taken 
over time by three decision processes, each with the same drift rate 
(using a discrete approximation; drift rate v = 0.2, a = 0.1, z = 0.05, 
and s = 0.1). Because of the variability in accumulation of informa- 
tion, the decision outcomes for these processes are quite different: One 
process reaches the positive boundary relatively quickly, a second 
reaches the negative boundary in error, and the third takes a relatively 
long time to reach the positive boundary. 

On average, a stimulus with a large positive drift rate will approach 
the positive boundary relatively quickly, and so the probability is rel- 
atively low that variability will cause the process to reach the negative 
boundary by mistake. But a stimulus with an intermediate drift rate 
will, on average, take longer to reach the correct boundary, and the 
probability of reaching the wrong boundary in error is larger. In this 
way, differences in drift rates account for differences between "easy" 
stimuli and "difficult" ones: For "easy" stimuli, drift rate has an 
extreme value and responses are fast and accurate on average, where- 
as for "difficult" stimuli, drift rate is intermediate in value and 
responses are slower and less accurate on average. 

Not only does the accumulation of information vary within the 
course of a decision, but the drift rate for the same, nominally equiva- 
lent, stimulus also varies across trials. In a memory task, for example, 
the same word dog might be remembered better on one trial than anoth- 
er, or a subject might better attend to it as a stimulus on one trial than 
another. The assumption about variability in drift was made because it 
seemed necessary to deal with variability in encoding in memory. 
Later, it turned out to be necessary to account for response signal func- 
tions asymptoting as a function of response signal lag (Ratcliff, 1978). 
Specifically, drift rate is assumed to be normally distributed across 
trials with standard deviation r|, a parameter of the model. As we 
explain later, the assumption of variability in drift rate across trials of 
the same stimulus causes the diffusion model to predict slower 
response times for incorrect responses than for correct responses. 

Speed-accuracy trade-offs are modeled by the boundary positions. 
When accuracy is emphasized, the boundaries are set far from the 
starting point; response times are slow and accuracy is high, as shown 
by the solid boundary lines in Figure la. When speed is emphasized, 
the boundaries are moved closer to the starting point, as illustrated by 
the dotted boundary lines in Figure la. Response times are shorter, and 
processes that would have hit the correct boundary are now more like- 
ly to hit the wrong boundary by mistake (the left-most T in Fig. la), 
leading to lowered accuracy. 

The distributions of response times in two-choice tasks are posi- 
tively skewed. The geometry of the diffusion process predicts this 
shape. Figure lb illustrates drift rates and response time distributions 
for two decisions that have the same variability in accumulation of 
information (the same s) but are different in difficulty (different drift 
rates). For each of the two drift rates represented by the two distribu- 
tions, the figure plots the average path to reach the positive boundary 
for the fastest and the slowest responses (the random lines in Fig. la 
are replaced by straight lines). The difference between the drift rates 
for the fastest responses, shown by the left-most X, is equal to the dif- 
ference between the drift rates for the slowest responses, shown by the 
right-most X These equal differences in drift rate translate into 

Fig. 1. Illustration of the diffusion model. The sample paths in (a) are 
derived from a random walk designed to mimic the diffusion process 
(the continuous version of the random walk). The bottom boundary is 
set to zero, the starting point of the walk to z, and the upper boundary 
to a. If the boundaries were moved in to the dotted lines, the process- 
es would terminate at the points T. The straight diagonal lines in 
(b) represent average paths for two conditions in which the fastest 
responses differ in mean drift by X, and the slowest responses differ in 
mean drift by X. The two curves at the upper decision boundary show 
illustrative distributions of reaction times for these two conditions. 
The distributions show that the same difference in mean drift leads to 
smaller differences between the shortest response times (Y) than 
between the longest response times (Z), illustrating the skewing of the 
response time distribution that is usually obtained empirically when 
conditions vary in difficulty. 

348 VOL. 9, NO. 5, SEPTEMBER 1998 

[Radcliff, Rouder, 1998]

initial position and 
boundaries: task set/priors

drift: imperative signal/
information flow



Theoretical framework 2: 
Neural population dynamics

neural populations/
fields/maps represent 
feature dimensions/
movement parameters

peaks of activation 
represent decisions  

[dynamicfieldtheory.org]

http://dynamicfieldtheory.org
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DFT

invites questions about 
“contents”

e.g. metric effect: predict 
faster RT for choices that 
are metrically close than 
for choices that are 
metrically far
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experiment:  
metric effect

[McDowell, Jeka, Schöner ]



The two theoretical frameworks 
overlap

Figure 2. Sequential-sampling models for two-choice decisions. (a) Taxonomy of the main model classes. The models assume that decisions are made by integrating noisy
stimulus information over time until a criterion amount of evidence needed for a response is obtained. In randomwalks, evidence is accumulated as a single total. Evidence

for a right response (‘R’) increases the total; evidence for a left response (‘L’) decreases it. A response is made when the evidence for one response exceeds the evidence for
the other by a criterion amount (a relative stopping rule). In accumulator models and counter models, evidence for the two responses is accumulated as separate totals.

The response is determined by the first total to reach a criterion (an absolute stopping rule). Models are classified according to whether evidence accumulates continuously
or at discrete time points, and whether the increments to the evidence totals are of variable size (continuously distributed) or occur in discrete units (e.g. counts). Random

walks in continuous time are diffusion processes. (b) Diffusion model. The sample paths represent moment-by-moment fluctuations in the evidence favoring right and left
responses. The process starts at z and accumulates evidence until it reaches one of two criteria, 0 and a. If the upper criterion is reached first, a ‘right’ response is made; if

the lower is reached first, a ‘left’ response is made. The moment-by-moment fluctuations in the sample paths reflect noise in the decision process. The mean rate of
accumulation varies randomly from trial to trial because of variability in the quality of the stimulus information. This variability allows the model to predict errors that are

slower than correct responses. Other behaviorally important sources of variability are the location of the starting point of the accumulation process and the duration of the
nondecision component of times for stimulus encoding and response execution (RT). The first of these sources of variability allows the model to predict errors that are
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Neural basis for decision making

firing rate in LIP. This holds for the Tin choices, but not when the
monkey makes the other choice. The idea is that this is when
the firing rate of another population of LIP neurons—the ones
with the other choice target in their response fields—reach a
threshold.

One implication is that the bounded evidence accumulation is
better displayed as a race between two DVs, one supporting
right and the other supporting left, as mentioned earlier (Fig-
ure 2B). This is convenient because it allows the mechanism
to extend to decisions among more than two options (Bolli-
munta et al., 2012; Churchland et al., 2008; Ditterich, 2010;
Usher and McClelland, 2001). It is just a matter of expanding
the number of races. With a large number of accumulators the
system can even approximate direction estimation (Beck
et al., 2008; Furman and Wang, 2008; Jazayeri and Movshon,
2006). A race architecture also introduces some flexibility into
the way the bound height is implemented in the brain. In
behavior, when a subject works in a slow but more accurate
regime, we infer that the bound is further away from the starting
point. Envisioned as a race, the change in excursion can be
achieved by a higher bound or by a lower starting point. It
appears that the latter is more consistent with physiology
(Churchland et al., 2008).

A race architecture also provides a simple way to incorporate
the cost of decision time (Drugowitsch et al., 2012) or deadline
(Heitz and Schall, 2012). One might imagine decision bounds
that squeeze inwardasa functionof time, thereby lowering thecri-
terion for termination. However, the brain achieves this by adding
a time-dependent (evidence-independent) signal to the accumu-
lated evidence,whichwe refer to as an ‘‘urgency’’ signal (Church-
land et al., 2008; Cisek et al., 2009). The urgency signal adds to
the accumulated evidence in all races, bringing DVs closer
to the bound rather than bringing the bounds closer to the DVs.
The bound itself is a fixed firing rate threshold (as in Figure 3D,
see also Hanes and Schall, 1996). This suggests that the termina-
tion mechanism could be achieved with a simple threshold
crossing, unencumbered by details such as the cost of time, the
tradeoff between speed and accuracy, and other policies that
affect the decision criteria. By implementing these policies in
areas like LIP, the brain can use the same mechanism to sense
a threshold crossing yet exercise different decision criteria for
different processes. For example, it may take less accumulated
evidence to decide to look at something than to grasp or eat it.
We are suggesting that different brain modules, support-

ing different provisional intentions, can operate on the same in-
formation in parallel and apply different criteria (Shadlen et al.,
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Figure 3. Neural and Behavioral Support for
Bounded Evidence Accumulation
(A) Choice-reaction time (RT) version of the direc-
tion discrimination task. The subject views a
patch of dynamic random dots and decides the
net direction of motion. The decision is indicated
by an eye movement to a peripheral target. The
subject controls the viewing duration by termi-
nating each trial with an eye movement whenever
ready. The gray patch shows the location of
the response field (RF) of an LIP neuron. One of
the choice targets is presented in the RF. RT, re-
action time.
(B) Effect of stimulus difficulty on choice accuracy
and decision time. The solid curve in the lower
graph is a fit of the bounded accumulation model
to the reaction time data. The model can be used
to predict the monkey’s accuracy (upper graph).
The solid curve is the predicted accuracy based on
bound and sensitivity parameters derived from the
fit to the RT data.
(C) Response of LIP neurons during decision for-
mation. Average firing rate from 54 LIP neurons is
shown for six levels of difficulty. Responses are
grouped by motion strength (color) and direction
(solid/dashed toward/away from the RF); they
include all trials, including errors. Firing rates are
aligned to onset of random-dot motion and trun-
cated at the median RT. Inset shows the rate of
rise of neural responses as a function of motion
strength. These buildup rates are calculated based
on spiking activity of individual trials 200–400 ms
after motion onset. Data points are the averaged
normalized buildup rates across cells. Positive/
negative values indicate increasing/decreasing
firing rate functions.
(D) Responses grouped by reaction time and
aligned to eye movement. Only Tin choices are
shown. Arrow shows the stereotyped firing rate
!70 ms before saccade initiation.
Adapted from Roitman and Shadlen (2002).
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Neuron

Perspective

model is thus a dynamic implementation of an intermediate model where there is some coupling
between different areas of the neural field.

3.3 Decision making, psychophysics and uncertainty

My discussion of perceptual choice has centered on electrophysiological data, but with crude be-
havioural resolution. To provide a cognitive perspective, behavioural measurements with higher
resolution are required. Those are provided by motion discrimination experiments. In a typical
motion discrimination task, a display of dots is presented on a computer screen and some fraction
of the dots are repeatedly displaced. The dots appear to move in the direction of displacement,
typically to the left or to the right. Monkeys are trained to move their eyes in the direction of
perceived movement, thus indicating their choice. Experimentalists manipulate the coherence of
movement by controlling the percentage of displaced dots, allowing them to finely control the cer-
tainty of evidence. Recording response time and accuracy provides psychophysical measurements
in response to the controlled parameter (coherence in this case).
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Figure 3: Data from Roitman and Shadlen (2002) is explained by the neural field model. (A) The
psychometric function plotting accuracy as a function of certainty of evidence. Experimental data
are shown as dots. The solid lines shows normalized output from the model. A linear transfor-
mation weighted in favor of high-rate activity is shown by the dashed line. (B) The chronometric

function plotting response time as a function of certainty of evidence. Again, dots and lines corre-
spond to data and output from the model respectively. (C) Neural response over time for different
levels of certainty of evidence. Solid and dashed lines show the spike rate of neurons respon-
sive to the chosen and unchosen stimuli respectively. (D) Output from the model in response to
simulation of the task in C.

Psychophysical measurements from Roitman and Shadlen (Roitman & Shadlen, 2002) are
shown as dots in Figures 3A and B. The figures show the psychometric and chronometric func-
tions respectively, depicting accuracy and reaction time as a function of the certainty of evidence.
At low coherence levels, the monkey makes a lot of errors and has long reaction times. With in-

7

[Trappenberg, 2008]

DFT

[Shadlen, Kiani, 2013]

motion strength~ 
information flow

motion strength~ 
input strength



Simon effectAppendix D: The slope of the Hick–Hyman law is reduced as
stimulus–response compatibility is increased. The same result is
obtained from simulations of the dynamic field using different
levels of specific input (Figure 16). This account is in agreement
with the experimental literature (for reviews, see Fitts & Posner,
1967; Keele, 1986).
The Simon effect. If different sources of information do not

converge, then specific input is supplied to multiple locations of
the field. In the task setting of the Simon effect (Craft & Simon,
1970), one field site receives dominant input, all other sites being
stimulated less. Although there are many versions of this classical
effect (for a review, see Lu & Proctor, 1995), consider the simple
setting in which a symbolic visual code specifies one of two
movements. For instance, a letter L may indicate that the left-most
of two response keys must be pressed and a letter R that the
right-most key must be pressed. That visual stimulus may be
provided in a neutral spatial position (e.g., on the midline of the
visual array) or in an asymmetrical position (e.g., to the right or to
the left of midline). The spatial location of the stimulus is an
irrelevant dimension because it does not specify any particular
movement. If the R signal is presented on the right, the L signal on
the left, then the irrelevant dimension is presented in congruent
form. If the arrangement is crossed, then the irrelevant dimension
is presented in incongruent form. If the signal is presented in the
center, then the irrelevant dimension is presented in neutral form
(but see below for other kinds of neutral conditions). The Simon
effect consists of the finding that reaction time depends on the
irrelevant stimulus dimension: Reaction time is shortest when the
irrelevant dimension is congruent, intermediate when it is neutral,
and slowest when it is incongruent with the specified response.
How the dynamic field model accounts for this effect is illus-

trated in Figure 20. The complete specific input (Figure 20a)
contains a small irrelevant contribution (shown in Figure 20b on a
larger scale). This irrelevant contribution is assumed to arise
automatically based on the spatial position of the stimulus. When

the irrelevant contribution converges with the symbolic informa-
tion, activation (Figure 20c) rises earlier than if it is incongruent.
This is due to two factors: A congruent irrelevant contribution adds
to activation at the specified sites and thus speeds the buildup of
activation, and an incongruent irrelevant contribution generates
activation at a competing site, which inhibits buildup of activation
at the specified site.
A similar mechanism has been postulated in the discrete neural

model of Zorzi and Umiltà (1995), in which a pair of neurons
represents two choices and another pair the irrelevant dimension
(left and right spatial position of stimulus). By embedding such an
account into the dynamic field framework, we arrive at new
insights, however. We predict, for instance, that the Simon effect
interacts with the metrics of the task, represented in the field by the
distance between activated field sites. This prediction can be
derived by analyzing the neutral condition, on the basis of which
facilitatory effects (characterized by shorter reaction times in con-
gruent than in neutral conditions) and interference effects (charac-
terized by longer reaction times in incongruent than in neutral
conditions) can be distinguished. In the simulations shown in
Figure 20, the neutral condition was modeled by adding an irrel-
evant component to specific input that was positioned symmetri-
cally between the two choices. When these three sites are far from
each other, they interact essentially only through inhibition. Thus,
the neutral condition and the incongruent condition become equiv-
alent: Both compete with the specified location. The interference
component of the effect will become very small. Thus, at large

Figure 19. Modeling increasing degrees of stimulus–response compati-
bility by increasing strength of specific input, Sspec(x) (a), leads to earlier
rise of maximal activation, umax(t), in the field (b); time is given in
milliseconds. Solid lines: The input strength for the specific input, gspec,
was 1.8. Dashed lines: The input strength for the specific input, gspec,
was 1.6. The arrow marks the parameter value specified at time t ! 0.

Figure 20. How the Simon effect (Craft & Simon, 1970; for a review, see
Lu & Proctor, 1995) arises from the model is illustrated. The field is
preshaped at the two parameter values (marked by arrows) representing the
two choices. Illustrated are simulations in which the left-most target is
specified. (a) Specific input, Sspec(x), consists of a dominant contribution
centered on the specified site and a smaller irrelevant contribution, Sirr(x),
illustrated in (b), centered over that same site (congruent: solid line), a
symmetrical site (neutral: dotted line), or the alternate site (incongruent:
dashed line). (c) Maximal activation in the field rises earliest when irrel-
evant input converges (solid line) and slowest when it is incongruent
(dashed line); the neutral condition leads to an intermediate timing of
activation buildup (dotted line); time is given in milliseconds. Task metrics
affect the relative size of these effects. The input strength for the specific
input, gspec, was 1.6; the input strength for the task input, gtask, was 1.2; and
the input strength for the irrelevant input, girr, was 0.12.

559DYNAMIC FIELD THEORY

IRRELEVANT LOCATION INFORMATION 175

The Simon Effect

The Spatial Stroop Effect

Relevant stimulus dimension: Color
Irrelevant stimulus dimension: Position

Relevant stimulus dimension: Word

Irrelevant stimulus dimension: Position

and integrate the findings across the domains. One rea-
son for this lack of systematic integration is that the two
domains have their origins in different research litera-
tures, those of stimulus-response (S-R) compatibility
effects (Proctor & Reeve, 1990) and color Stroop effects
(MacLeod, 1991), respectively. Moreover, the Simon and
spatial Stroop tasks typically have been regarded as dif-
ferent in nature, because the relevant and irrelevant stim-
ulus dimensions are dissimilar in the Simon task but
highly similar in the spatial Stroop task. This task dis-
tinction has been formalized in Kornblum's (1992, 1994)
taxonomy, which places the Simon and Stroop tasks in
different categories (Types 3 and 8, respectively) accord-
ing to the similarity of the relevant and irrelevant stimu-
lus dimensions. However, because both the Simon and
spatial Stroop effects are typically attributed to response-
selection processes (e.g., Dyer, 1973; Umilta & Nicoletti,
1990), the possibility exists that the degree of similarity
between the relevant and irrelevant stimulus dimensions
is not of importance.

The purpose of the present paper is to consider in de-
tail the findings obtained for the Simon and spatial Stroop
tasks, with the intent of providing a more complete un-
derstanding of the effect of irrelevant location. We first
review each domain, discussing the empirical findings that
have been obtained and the theoretical accounts that
have been proposed for these findings. Because most re-
cent studies and models regarding the influence of loca-
tion have chiefly been concerned with visual stimuli
(see, e.g., Umilta & Nicoletti, 1992), our review focuses
primarily, but not exclusively, on visual choice-reaction
tasks. For each domain, issues regarding how irrelevant
location information is processed, the processing stage
involved, spatial attention, and automaticity are consid-
ered. We next illustrate the similarity of the task struc-
tures for the Simon and spatial Stroop domains, as well
as of the results that are obtained, and then consider sev-
eral basic factors involved in the processing ofirrelevant
location information. The article concludes with discus-
sion of the implications that these factors have for mod-
eling the influence of irrelevant location information on
performance.

o

o

o

o

Response

Response

Figure 1. Examples of the Simon effect (top panel) and the spatial
Stroop effect (bottom panel). For both tasks, one stimulus occurs on
each trial in either a left or a right location, but stimulus location is ir-
relevant to the task. Keypress responses are to be based on the rele-
vant stimulus dimension, which is unrelated to the irrelevant location
dimension in the Simon task (e.g., stimulus color, as in tbe example)
but alsohas a location property in the spatial Stroop task (e.g., loca-
tion word, as in the example). If the left keypress response is to be
made to a specific stimulus color (the Simon task) or to the word LEFr
(the spatial Stroop task), responses are faster when the stimulus oc-
curs in the left location than when it occurs in the right location (as
indicated by the labeled arrows).
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THE SIMON EFFECT
are instructed to respond on the basis of the relevant
stimulus dimension.

The question of why location information affects re-
sponding when it is irrelevant to the task has provoked
much interest, as witnessed, for example, by a recent spe-
cial issue of the journal Psychological Research/Psycho-
logische Forschung (April 1994) devoted to the Simon
effect. This question provokes interest because the an-
swer to it likely will tell us much about how stimulus prop-
erties enter into the selection of action. Although con-
siderable research has been conducted within the domains
ofthe Simon and spatial Stroop effects, as Umilta (1994)
noted in the introduction to the special issue, "the Simon
effect is very seldom included among the Stroop-like ef-
fects" (p. 127), and little attempt has been made to relate

The Basic Phenomenon
Simon and Small (1969) first obtained what has come

to be called the Simon effect with auditory stimuli.'
They instructed subjects to make left or right keypresses
to low- or high-pitched tones. On any trial, the tone was
presented to either the left or the right ear. Responses to
the "right" command (e.g., high-pitched tone) were62 msec
faster when it was heard in the right ear rather than the
left ear, whereas responses to the "left" command (e.g.,
low-pitched tone) were 60 msec faster when it was heard
in the left ear rather than the right ear. Simon and Small
attributed this phenomenon to a natural tendency to react
toward the source of stimulation. Simon and his col-
leagues subsequently replicated and extended this effect
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Response System 

Feature nodes Position nodes 

Fig. 1 Sketch of the model, with its nodes and connections. The 
thick lines from position nodes to response nodes represent hard- 
wired excitatory (i.e., positive) connections, while the other connec- 
tions are weight-modifiable. The response system incorporates 
a competitive mechanism: each response node sends lateral inhibi- 
tion to the other node (via a hard-wired, negative-weighted connec- 
tion) 

activation reaches a certain threshold (in all simula- 
tions, a value of 0.5). In the testing phase, the input 
nodes are clamped to the values of the corresponding 
experimental condition and the values of the response 
nodes are registered at every timestep. To have a first 
sketch of the system's performance, the noise parameter 
is set to zero. This means that the system becomes 
deterministic, and that, for a given condition, we can 
discuss a single run of the model instead of averaging 
over many runs. 

It can be assumed that spatial position is immedi- 
ately coded after stimulus onset (e.g., Bundesen, 1991; 
Tipper, Weaver, & Houghton, 1994), whereas stimulus 
discrimination (which is based on nonspatial stimulus 
features) is delayed as a function of the difficulty of the 
task. The delay is substantial if the two patterns to 
be discriminated are very similar (say, a square and 
a rectangle). However, even in the case of the simplest 
stimulus attribute (e.g., color), it is likely that the dis- 
crimination process is completed (and thus the process 
of response selection begins) some time after the encod- 
ing of the stimulus position. Therefore, in running the 
model, the appropriate position nodes are clamped at 
timestep t = 1, while the feature nodes are clamped 
some timesteps later. This delay in clamping the 
relevant attribute units may be a function of the dis- 
crimination difficulty. Hence, we may expect to have 
a decrease in the Simon effect as a function of the 
amount of delay, because the activation of the position 
node decays spontaneously over time (eq. 1). 

For short delays (low task difficulty), we should 
expect to find a significant increase of cycles (RTs) in 
the noncorresponding (contralateral) condition com- 
pared to the corresponding (ipsilateral) condition. 
Furthermore, the Simon effect should arise from the 
combination of a facilitatory and an inhibitory com- 

ponent with respect to a baseline condition (as we said 
before, we simulate the neutral condition by having 
both position nodes inactive). 

Simulation 1: Evaluation of the basic architecture 

One important parameter of the model is the strength 
of the inhibitory weight (dipole) that connects the two 
response nodes. In the case of the noncorresponding 
condition, the inhibitory component of the Simon effect 
may arise because the primed (but incorrect) response 
node sends some inhibition to the other (correct) re- 
sponse node, slowing down its activation's rebuild 
when the feature node becomes active. So it can be 
predicted that the size of the inhibitory effect is directly 
related to the (inhibitory) strength of the dipole- that  
is, to how much a response unit inhibits the other in 
competing for responding. To start looking at the be- 
havior of the model, we use for the dipole (w- in 
equation 4) a value of -1. 3 

The simulation results are showed in Table 1. The 
crucial finding is that in the noncorresponding condi- 
tion the system needs a longer time to settle (i.e., the 
response node needs more cycles to reach the thre- 
shold). Comparing the model's RTs in the correspond- 
ing and in the noncorresponding conditions to the 
neutral (baseline) condition, it is clear that both facilita- 
tion and inhibition are present. However, the inhibitory 
component to the Simon effect is about half the (com- 
plementary) facilitatory component. This is rather in- 
consistent with the data reported in previous studies. In 
fact, in most of the studies in which a baseline condition 
was present, facilitation and inhibition were of about 
the same size (e.g., Simon and Craft, 1970; Wallace, 
1971; Simon & Acosta, 1982; Stoffels & Van der Molen, 
1988; Hommel, 1993b; and Lu & Proctor, 1995, for 
review and discussion). As can be seen from Table 1, the 
size of the Simon effect decreases as a function of task 
difficulty (and thus of an overall lengthening of RTs), 
where task difficulty is modeled by the assumption of 
a longer delay in the onset of the relevant attribute 
node. 

Simulation 2: Tuning and analysis of the model 

In simulation 1 we replicated the basic finding of the 
Simon effect-that  is, slower responses in the noncor- 
responding condition. Preliminary simulations showed 
that to obtain facilitatory and inhibitory components 
of about the same magnitude, the model's parameter 

3This initial value of the dipole was chosen in order to have 
a connection strength comparable for size (but opposite for sign) to 
the excitatory connections in the model (in particular, those linking 
the position nodes with the response nodes, which are valued + 1) 

[Erlhagen, Schöner, Psych Rev 2002][Zorzi, Umilta, 1995]

[Lu, Proctor, 1995]
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