Mathematics and Computer Science for Modeling Unit 2: Functions in Math

Daniel Sabinasz based on materials by Jan Tekülve and Daniel Sabinasz

Institut für Neuroinformatik, Ruhr-Universität Bochum

September 27, 2023

Dates

- **1.** Mon 25.09. 15-17:30
- 2. Tue 26.09. 09:00-11:30, 15-17:30
- 3. Wed 27.09. 15-17:30
- 4. Thu 28.09. 15-17:30
- 5. Fri 29.09. 15-17:30
- 6. Mon 02.10. 09:00-11:30, 15-17:30
- 7. Wed 04.10. 15-17:30

Course Structure

Unit	Title	Topics			
1	Intro to Programming in Python	Variables, if Statements, Loops, Func-			
		tions, Lists			
-	Full-Time Programming Session	Deepen Programming Skills			
2	Functions in Math	Function Types and Properties, Plotting			
		Functions			
3	Linear Algebra	Vectors, Trigonometry, Matrices			
4	Calculus	Derivative Definition, Calculating			
		Derivatives			

Course Structure

Unit	Title	Topics
5	Integration	Geometrical Definition, Calculating In-
		tegrals
6	Differential Equations	Properties of Differential Equations
-	04.10.23: Test	

Lecture Slides/Material

Use the following URL to access the lecture slides:

https://www.ini.rub.de/teaching/courses/preparatory_course_mathematics _and_computer_science_for_modeling_winter_term_2023

1. Sets and Number Systems

2. Functions in Math

- > Definition
- ► Function Types
- Parametrization
- ► Multiple Arguments
- > Properties

1. Sets and Number Systems

2. Functions in Math

- Definition
- Function Types
- Parametrization
- Multiple Arguments
- > Properties

Sets

- For practical purposes, think of a **set** as a container of objects
- e.g., the set of natural numbers

Sets

- Notation: $\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, ...\}$
- Something is either in the set or not in the set
- If something is in the set, we call it an element of the set
- e.g., 5 is an element of \mathbb{N} , but -3 is not an element of \mathbb{N}
- Write $5 \in \mathbb{N}$ and $-3 \notin \mathbb{N}$

Sets

- Instead of listing all the elements, you can describe in natural language what the elements should be
- e.g., $A = \{x \mid x \text{ is an even number}\} = \{0, 2, 4, 6, 8, \ldots\}$

- Natural Numbers: $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- Integer Numbers: $\mathbb{Z} =$
- 🕨 Rational Numbers: 🛛
- Real Numbers: \mathbb{R}

Number Systems

- Natural Numbers: $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- Integer Numbers: $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$
- Rational Numbers: Q
- Real Numbers: \mathbb{R}

-4 -3 -2 -1 0 1 2 3 4

- Natural Numbers: $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- Integer Numbers: $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$
- Rational Numbers: $\mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ and } b \neq 0 \}$
- Real Numbers: \mathbb{R}

$$-4 -3 -2 -1 0 \frac{1}{2} \frac{3}{4} 1 \frac{7}{4} 2 \frac{10}{4} 3 4$$

- Natural Numbers: $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$
- Integer Numbers: $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$
- Rational Numbers: $\mathbb{Q} = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$
- **Real Numbers**: $\mathbb{R} = \mathbb{Q} \cup$ irrational numbers

1. Sets and Number Systems

2. Functions in Math

- > Definition
- ► Function Types
- Parametrization
- ► Multiple Arguments
- > Properties

Function Intuition

- Function example: f(x) = 2x + 3
- A function, written like this, can be thought of as a formula that can be evaluated to give the value of the function

►
$$f(1) = 2 \cdot 1 + 3 = 5$$

►
$$f(2) = 2 \cdot 2 + 3 = 6$$

Tabular Interpretation of: f(x) = 2x + 3

x 0 1 2 3 4 5 **y**

Tabular Interpretation of: f(x) = 2x + 3

x 0 1 2 3 4 5 **y** 5

Tabular Interpretation of: f(x) = 2x + 3

х	0	1	2	3	4	5
у	3	5	7	9	11	13

Function Definition

Function

X and Y are two sets. A **function** $f : X \to Y$ is a mathematical object that assigns each element $x \in X$ exactly one element $y \in Y$.

$$x \rightarrow y = f(x)$$

- x is called the function argument
- y is called the function value
- X is called the domain
- Y is called the codomain
- The image W of f(x) are all values in Y that can be assumed by the function.

Matplotlib

matpletlib

Matplotlib allows to plot functions:

```
import matplotlib.pyplot as plt
```

```
numbers = [2*x+3 \text{ for } x \text{ in range}(6)]
```

```
plt.plot(numbers)
plt.show()
```

Function Types

Linear Functions

Function Types

• Linear Functions y = mx + b

• **Power Functions** $y = ax^n$

Function Types

• Linear Functions y = mx + b

• **Power Functions** $y = ax^n$

▶ Polynomial Functions $y = \sum_{i=0}^{n} a_i x^i$ $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + ... a_n x^n$ describes a polynomial of degree *n*, where $a_n \neq 0$

The Summation Symbol

- $\sum_{i=0}^{n} T(i)$ denotes a sum of multiple terms
- The bottom row defines an indexing variable, here i, and specifies an initial value, here 0
- ▶ That variable takes on increasing values (0, 1, 2, 3, ..., n)
- The top row specifies the maximum value for i, here n
- ► *T*(*i*) specifies a term for each *i*
- $\sum_{i=0}^{n} T(i)$ sums up T(i) for each i
- Thus, $\sum_{i=0}^{n} T(i) = T(0) + T(1) + T(2) + \ldots + T(n)$

• e.g.,
$$\sum_{i=0}^{5} i = 0 + 1 + 2 + 3 + 4 + 5$$

Exponentials Functions

Exponential Functions

Logarithmic Functions

The Gaussian Function

The Gaussian Function

Trigonometric Functions

Chaining Functions

Chaining Functions

Chaining Functions

Function Translation

▶ Translation in *y*-direction: $\hat{f}(x) = f(x) + b$

Translation in *x*-direction: $\hat{f}(x) = f(x - a)$

Function Translation

▶ Translation in *y*-direction: $\hat{f}(x) = f(x) + b$

Translation in *x*-direction: $\hat{f}(x) = f(x - a)$

Function Translation

• Translation in y-direction: $\hat{f}(x) = f(x) + b$

Translation in *x*-direction: $\hat{f}(x) = f(x - a)$

- Stretching/Compression in *y*-direction: $\hat{f}(x) = df(x), d > 0$
- Stretching/Compression in *x*-direction: $\hat{f}(x) = f(cx), c > 0$

- Stretching/Compression in *y*-direction: $\hat{f}(x) = df(x), d > 0$
- Stretching/Compression in *x*-direction: $\hat{f}(x) = f(cx), c > 0$

- Stretching/Compression in *y*-direction: $\hat{f}(x) = df(x), d > 0$
- Stretching/Compression in *x*-direction: $\hat{f}(x) = f(cx), c > 0$

- Stretching/Compression in *y*-direction: $\hat{f}(x) = df(x), d > 0$
- Stretching/Compression in *x*-direction: $\hat{f}(x) = f(cx), c > 0$

Example

Function Reflection

- Reflection across the *y*-axis: $\hat{f}(x) = f(-x)$
- Reflection across the *x***-axis**: $\hat{f}(x) = -f(x)$

Exercise 1

- 1. Give an example for a natural number, a negative integer, a rational number and an irrational number
- 2. Which of the following is true? (a) Every real number is rational. (b) Every integer is rational. (c) Every natural number is a real number.
- 3. Let $f : \mathbb{N} \to \mathbb{R}, x \to 2x + 3$. Identify the function argument, the function value, the domain, the codomain and the image.
- 4. Create a function $\hat{f}(x)$ by translating $f(x) = e^x$ by -2 in y-direction and by 3 in x-direction.
- 5. Create a function $\hat{f}(x)$ by stretching $f(x) = e^x$ along the y-axis and compressing it along the x-axis.
- 6. Create a function $\hat{f}(x)$ by compressing $f(x) = e^x$ along the y-axis and stretching it along the x-axis.

Exercise 2

- **1.** Write a python function that calculates f(x) = 4x + 3 and plot it.
- **2.** Define a second function $g(x, a_0, a_1, a_2, a_3)$ that calculates a polynomial of degree 3 with variable coefficients a_0 to a_3 and plot g(x, 3, 0, 2, 1)
- 3. Calculate f(x) or g(x, 3, 0, 2, 1) for x values from 0 to 20. Store the result in a list.
- 4. (optional) Define a function 'polynomial(a, x)' that receives a list of coefficients 'a' (a₀, a₁, a₂, ..., aₙ) with a flexible number of items and computes ∑ⁿ_{i=0} a_ixⁱ.

f(x,y) = x + y

 $f(x,y) = \sin(x) + y$

$$f(x, y) = e^{-(x^2 + y^2)}$$

$$f(x,y) = e^{-((x-2)^2 + (y+1)^2)}$$

Injective, Surjective and Bijective Functions

- An image f is **injective**, if two different elements $x_1 \neq x_2$ are always projected to two different elements $y_1 \neq y_2$
- An image f is **surjective**, if for each element $y \in Y$ one $x \in X$ exists, such that y = f(x)
- An image f is **bijective**, if it is injective and surjective

Image source: https://commons.wikimedia.org/wiki/File:Injective,_Surjective,_Bijective.svg

Injective, Surjective and Bijective Functions

An image *f* is **injective**, if two different elements $x_1 \neq x_2$ are always projected to two different elements $y_1 \neq y_2$

An image f is **surjective**, if for each element $y \in Y$ one $x \in X$ exists, such that y = f(x)

Bijective Function Example

Inverse Function

Definition

Given a bijective function $f : X \to Y$, $f^{-1} : Y \to X$ denotes the inverse function of f.

It holds that $f^{-1}(f(x)) = x$ for all $x \in X$.

Inverse Function

Definition

Given a bijective function $f : X \to Y$, $f^{-1} : Y \to X$ denotes the inverse function of f.

It holds that $f^{-1}(f(x)) = x$ for all $x \in X$.

Monotonicity

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is called **monotonically increasing**, if for all x_1, x_2 order is preserved by applying f:

$$x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$$

A function $f : \mathbb{R} \to \mathbb{R}$ is called **monotonically decreasing**, if for all x_1, x_2 order is reversed by applying f:

$$x_1 \leq x_2 \Rightarrow f(x_1) \geq f(x_2)$$

Monoticity Examples

Functions Exercise 3

- 1. Write a python function that calculates $f(x, y) = 4x^2 + 2(y 2)^2$ and plot it.
- 2. Determine the inverse $f^{-1}(x)$ of f(x) = 2x + 3
- 3. For each of the following functions, determine if they are monotonically increasing, monotonically decreasing or neither: $f(x) = x^2$, $f(x) = -x^5$, $f(x) = x^7$