Mathematics and Computer Science for Modeling Unit 2: Functions in Math

Daniel Sabinasz
based on materials by Jan Tekülve and Daniel Sabinasz
Institut für Neuroinformatik, Ruhr-Universität Bochum

September 27, 2023

Dates

1. Mon 25.09. 15-17:30
2. Tue 26.09. 09:00-11:30, 15-17:30
3. Wed 27.09. 15-17:30
4. Thu 28.09. 15-17:30
5. Fri 29.09. 15-17:30
6. Mon 02.10. 09:00-11:30, 15-17:30
7. Wed 04.10. 15-17:30

Course Structure

Unit	Title	Topics
1	Intro to Programming in Python	Variables, if Statements, Loops, Func- tions, Lists
-	Full-Time Programming Session	Deepen Programming Skills
2	Functions in Math	Function Types and Properties, Plotting Functions
3	Linear Algebra	Vectors, Trigonometry, Matrices 4 Calculus
Derivative Definition, Calculating Derivatives		

Course Structure

Unit	Title	Topics
5	Integration	Geometrical Definition, Calculating In- tegrals
6	Differential Equations	Properties of Differential Equations
-	04.10.23: Test	

Lecture Slides/Material

Use the following URL to access the lecture slides:
https://www.ini.rub.de/teaching/courses/preparatory_course_mathematics _and_computer_science_for_modeling_winter_term_2023

1. Sets and Number Systems

2. Functions in Math

$>$ Definition

- Function Types
> Parametrization
> Multiple Arguments
> Properties

1. Sets and Number Systems

2. Functions in Math
 $>$ Definition
 > Function Types
 > Parametrization
 > Multiple Arguments
 > Properties

Sets

- For practical purposes, think of a set as a container of objects
- e.g., the set of natural numbers

Sets

- Notation: $\mathbb{N}=\{0,1,2,3,4,5,6, \ldots\}$
- Something is either in the set or not in the set
- If something is in the set, we call it an element of the set
- e.g., 5 is an element of \mathbb{N}, but -3 is not an element of \mathbb{N}
- Write $5 \in \mathbb{N}$ and $-3 \notin \mathbb{N}$

Sets

- Instead of listing all the elements, you can describe in natural language what the elements should be
- e.g., $A=\{x \mid x$ is an even number $\}=\{0,2,4,6,8, \ldots\}$

Number Systems

Number Systems

- Natural Numbers: $\mathbb{N}=\{0,1,2,3,4, \ldots\}$
- Integer Numbers: $\mathbb{Z}=$
- Rational Numbers: \mathbb{Q}
- Real Numbers: \mathbb{R}

Number Systems

Number Systems

- Natural Numbers: $\mathbb{N}=\{0,1,2,3,4, \ldots\}$
- Integer Numbers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Rational Numbers: \mathbb{Q}
- Real Numbers: \mathbb{R}

Number Systems

Number Systems

- Natural Numbers: $\mathbb{N}=\{0,1,2,3,4, \ldots\}$
- Integer Numbers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Rational Numbers: $\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}\right.$ and $\left.b \neq 0\right\}$
- Real Numbers: \mathbb{R}

Number Systems

Number Systems

- Natural Numbers: $\mathbb{N}=\{0,1,2,3,4, \ldots\}$
- Integer Numbers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Rational Numbers: $\mathbb{Q}=\frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$
- Real Numbers: $\mathbb{R}=\mathbb{Q} \cup$ irrational numbers

Number Systems

1. Sets and Number Systems

2. Functions in Math

$>$ Definition
> Function Types
> Parametrization
> Multiple Arguments
> Properties

Function Intuition

- Function example: $f(x)=2 x+3$
- A function, written like this, can be thought of as a formula that can be evaluated to give the value of the function
- e.g.,
- $f(1)=2 \cdot 1+3=5$
- $f(2)=2 \cdot 2+3=6$

Plotting Functions

Tabular Interpretation of: $f(x)=2 x+3$

\mathbf{x}	0	1	2	3	4	5
\mathbf{y}						

Plotting Functions

Tabular Interpretation of: $f(x)=2 x+3$

\mathbf{x}	0	1	2	3	4	5
\mathbf{y}		5				

Plotting Functions

Tabular Interpretation of: $f(x)=2 x+3$

\mathbf{x}	0	1	2	3	4	5
\mathbf{y}		5				

Plotting Functions

Tabular Interpretation of: $f(x)=2 x+3$

\mathbf{x}	0	1	2	3	4	5
\mathbf{y}		5		9		

Plotting Functions

Tabular Interpretation of: $f(x)=2 x+3$

\mathbf{x}	0	1	2	3	4	5
\mathbf{y}	3	5	7	9	11	13

Plotting Functions

Tabular Interpretation of: $f(x)=2 x+3$

\mathbf{x}	0	1	2	3	4	5
\mathbf{y}	3	5	7	9	11	13

Function Definition

Function

X and Y are two sets.
A function $f: X \rightarrow Y$ is a mathematical object that assigns each element $x \in X$ exactly one element $y \in Y$.

$$
x \rightarrow y=f(x)
$$

- x is called the function argument
- y is called the function value
- X is called the domain
- Y is called the codomain
- The image W of $f(x)$ are all values in Y that can be assumed by the function.

Matplotlib

matpl*tlib

- Matplotlib allows to plot functions:
import matplotlib.pyplot as plt
numbers $=[2 * x+3$ for x in range(6)]
plt.plot(numbers)
plt.show()

Function Types

- Linear Functions
$y=m x+b$

Function Types

- Linear Functions
$y=m x+b$
- Power Functions
$y=a x^{n}$

Function Types

- Linear Functions
$y=m x+b$
- Power Functions
$y=a x^{n}$
- Polynomial Functions
$y=\sum_{i=0}^{n} a_{i} x^{i}$
$y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots a_{n} x^{n}$
describes a polynomial of degree n, where $a_{n} \neq 0$

The Summation Symbol

- $\sum_{i=0}^{n} T(i)$ denotes a sum of multiple terms
- The bottom row defines an indexing variable, here i, and specifies an initial value, here 0
- That variable takes on increasing values ($0,1,2,3, \ldots, n$)
- The top row specifies the maximum value for i, here n
- $T(i)$ specifies a term for each i
- $\sum_{i=0}^{n} T(i)$ sums up $T(i)$ for each i
- Thus, $\sum_{i=0}^{n} T(i)=T(0)+T(1)+T(2)+\ldots+T(n)$
- e.g., $\sum_{i=0}^{5} i=0+1+2+3+4+5$

Exponentials Functions

Exponential Functions

$$
f(x)=e^{x} \quad g(x)=10^{x}
$$

Logarithmic Functions

$$
h(x)=\ln (x) \quad j(x)=\log _{10}(x)
$$

λ

The Gaussian Function

$$
f(x)=e^{-x^{2}}
$$

The Gaussian Function

$$
f(x)=e^{-x^{2}} \quad g(x)=e^{-(x-2)^{2}}
$$

Trigonometric Functions

$$
f(x)=\sin (x) \quad g(x)=\cos (x)
$$

Chaining Functions

Chaining Functions

Chaining Functions

$$
f(x)=e^{-x^{2}} \quad g(x)=\cos (x) \quad h(x)=g(f(x)) \quad j(x)=f(g(x))
$$

Function Translation

- Translation in y-direction: $\hat{f}(x)=f(x)+b$
- Translation in x-direction: $\hat{f}(x)=f(x-a)$

Function Translation

- Translation in y-direction: $\hat{f}(x)=f(x)+b$
- Translation in x-direction: $\hat{f}(x)=f(x-a)$

Function Translation

- Translation in y-direction: $\hat{f}(x)=f(x)+b$
- Translation in x-direction: $\hat{f}(x)=f(x-a)$

Function Stretching and Compression

- Stretching/Compression in y-direction: $\hat{f}(x)=\boldsymbol{d} f(x), d>0$
- Stretching/Compression in \boldsymbol{x}-direction: $\hat{f}(x)=f(c x), c>0$

Function Stretching and Compression

- Stretching/Compression in \boldsymbol{y}-direction: $\hat{f}(x)=\boldsymbol{d} f(x), d>0$
- Stretching/Compression in \boldsymbol{x}-direction: $\hat{f}(x)=f(c x), c>0$

$$
f(x)=e^{x} \quad g(x)=\frac{1}{2} e^{x}
$$

Function Stretching and Compression

- Stretching/Compression in y-direction $: \hat{f}(x)=d f(x), d>0$
- Stretching/Compression in \boldsymbol{x}-direction: $\hat{f}(x)=f(c x), c>0$

$$
f(x)=e^{x} \quad g(x)=\frac{1}{2} e^{x} \quad h(x)=4 e^{x}
$$

Function Stretching and Compression

- Stretching/Compression in y-direction $: \hat{f}(x)=d f(x), d>0$
- Stretching/Compression in \boldsymbol{x}-direction: $\hat{f}(x)=f(c x), c>0$

Example

Function Reflection

- Reflection across the \boldsymbol{y}-axis: $\hat{f}(x)=f(-x)$
- Reflection across the \boldsymbol{x}-axis: $\hat{f}(x)=-f(x)$

Exercise 1

1. Give an example for a natural number, a negative integer, a rational number and an irrational number
2. Which of the following is true? (a) Every real number is rational. (b) Every integer is rational. (c) Every natural number is a real number.
3. Let $f: \mathbb{N} \rightarrow \mathbb{R}, x \rightarrow 2 x+3$. Identify the function argument, the function value, the domain, the codomain and the image.
4. Create a function $\hat{f}(x)$ by translating $f(x)=e^{x}$ by -2 in y-direction and by 3 in x-direction.
5. Create a function $\hat{f}(x)$ by stretching $f(x)=e^{x}$ along the y-axis and compressing it along the x -axis.
6. Create a function $\hat{f}(x)$ by compressing $f(x)=e^{x}$ along the y-axis and stretching it along the x -axis.

Exercise 2

1. Write a python function that calculates $f(x)=4 x+3$ and plot it.
2. Define a second function $g\left(x, a_{0}, a_{1}, a_{2}, a_{3}\right)$ that calculates a polynomial of degree 3 with variable coefficients a_{0} to a_{3} and plot $g(x, 3,0,2,1)$
3. Calculate $f(x)$ or $g(x, 3,0,2,1)$ for x values from 0 to 20 . Store the result in a list.
4. (optional) Define a function 'polynomial (a, x) ' that receives a list of coefficients 'a' $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right)$ with a flexible number of items and computes $\sum_{i=0}^{n} a_{i} x^{i}$.

Multiple Arguments

$$
f(x, y)=x+y
$$

Multiple Arguments

$$
f(x, y)=\sin (x)+y
$$

Multiple Arguments

$$
f(x, y)=e^{-\left(x^{2}+y^{2}\right)}
$$

Multiple Arguments

$$
f(x, y)=e^{-\left((x-2)^{2}+(y+1)^{2}\right)}
$$

Injective, Surjective and Bijective Functions

- An image f is injective, if two different elements $x_{1} \neq x_{2}$ are always projected to two different elements $y_{1} \neq y_{2}$
- An image f is surjective, if for each element $y \in Y$ one $x \in X$ exists, such that $y=f(x)$
- An image f is bijective, if it is injective and surjective
(a) Injective but non-surjective
(b) Non-Injective but surjective

Image source:
(c) Injective and surjective (bijective)

https://commons.wikimedia.org/wiki/File:Injective,_Surjective,_Bijective.svg

Injective, Surjective and Bijective Functions

- An image f is injective, if two different elements $x_{1} \neq x_{2}$ are always projected to two different elements $y_{1} \neq y_{2}$
- An image f is surjective, if for each element $y \in Y$ one $x \in X$ exists, such that $y=f(x)$

Injective, but not surjective

$$
f(x)=e^{x}
$$

Surjective, but not Injective

$$
f(x)=x \sin (x)
$$

Bijective Function Example

$$
f(x)=4 x
$$

$$
f(x)=x^{3}
$$

Inverse Function

Definition

Given a bijective function $f: X \rightarrow Y, f^{-1}: Y \rightarrow X$ denotes the inverse function of f.

It holds that $f^{-1}(f(x))=x$ for all $x \in X$.

Inverse Function

Definition

Given a bijective function $f: X \rightarrow Y, f^{-1}: Y \rightarrow X$ denotes the inverse function of f.

It holds that $f^{-1}(f(x))=x$ for all $x \in X$.

Image source:
https://www.geogebra.org/m/Efs8QRRF

Monotonicity

Definition

- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called monotonically increasing, if for all x_{1}, x_{2} order is preserved by applying f :

$$
x_{1} \leq x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)
$$

- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called monotonically decreasing, if for all x_{1}, x_{2} order is reversed by applying f :

$$
x_{1} \leq x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)
$$

Monoticity Examples

monotonically increasing

monotonically decreasing

Functions Exercise 3

1. Write a python function that calculates $f(x, y)=4 x^{2}+2(y-2)^{2}$ and plot it.
2. Determine the inverse $f^{-1}(x)$ of $f(x)=2 x+3$
3. For each of the following functions, determine if they are monotonically increasing, monotonically decreasing or neither: $f(x)=x^{2}, f(x)=-x^{5}$, $f(x)=x^{7}$
