Mathematics and Computer Science for Modeling Unit 3: Linear Algebra

Daniel Sabinasz
based on materials by Jan Tekülve and Daniel Sabinasz
Institut für Neuroinformatik, Ruhr-Universität Bochum

September 28, 2023

Dates

1. Mon 25.09. 15-17:30
2. Tue 26.09. 09:00-11:30, 15-17:30
3. Wed 27.09. 15-17:30
4. Thu 28.09. 15-17:30
5. Fri 29.09. 15-17:30
6. Mon 02.10. 09:00-11:30, 15-17:30
7. Wed 04.10. 15-17:30

Course Structure

Unit	Title	Topics
1	Intro to Programming in Python	Variables, if Statements, Loops, Func- tions, Lists
-	Full-Time Programming Session	Deepen Programming Skills
2	Functions in Math	Function Types and Properties, Plotting Functions
3	Linear Algebra	Vectors, Trigonometry, Matrices
4	Calculus	Derivative Definition, Calculating Derivatives

Course Structure

Unit	Title	Topics
5	Integration	Geometrical Definition, Calculating In- tegrals
6	Differential Equations	Properties of Differential Equations
-	04.10.23: Test	

Lecture Slides/Material

Use the following URL to access the lecture slides:
https://www.ini.rub.de/teaching/courses/preparatory_course_mathematics _and_computer_science_for_modeling_winter_term_2023

1. Linear Algebra

> Angles and Trigonometry
> Vectors
> Matrices

The number π

The number π

The number π

The number π

$$
\frac{75.39}{24}=3.14159 \ldots=\pi
$$

The number π

$$
\frac{75.39}{24}=3.14159 \ldots=\pi \text { and } \frac{56.54}{18}=3.14159 \ldots=\pi
$$

The number π

$$
\frac{75.39}{24}=3.14159 \ldots=\pi \text { and } \frac{56.54}{18}=3.14159 \ldots=\pi
$$

Circumference of a circle: $2 \pi r$

Measuring Angles

- Defining a full angle as 360° is common but actually arbitrary

Measuring Angles

- Defining a full angle as 360° is common but actually arbitrary
- Less arbitrary is the use of the actual length of the enclosed arc-segment called the Radian

Measuring Angles

- Defining a full angle as 360° is common but actually arbitrary
- Less arbitrary is the use of the actual length of the enclosed arc-segment called the Radian
- Thus $360^{\circ}=2 \pi, 90^{\circ}=\frac{\pi}{2}$, $180^{\circ}=\pi \ldots$

Measuring Angles

- Defining a full angle as 360° is common but actually arbitrary
- Less arbitrary is the use of the actual length of the enclosed arc-segment called the Radian
-Thus $360^{\circ}=2 \pi, 90^{\circ}=\frac{\pi}{2}$, $180^{\circ}=\pi \ldots$
$-\operatorname{Rad} x$ to Degree: $x \cdot \frac{180^{\circ}}{\pi}$

Measuring Angles

- Defining a full angle as 360° is common but actually arbitrary
- Less arbitrary is the use of the actual length of the enclosed arc-segment called the Radian
-Thus $360^{\circ}=2 \pi, 90^{\circ}=\frac{\pi}{2}$, $180^{\circ}=\pi \ldots$
$\Rightarrow \operatorname{Rad} x$ to Degree: $x \cdot \frac{180^{\circ}}{\pi}$
- Degree d to Rad: $d \cdot \frac{\pi}{180^{\circ}}$

Angle Conversion Examples

- Degree to Radians: $d \cdot \frac{\pi}{180^{\circ}}$
$\alpha_{\mathrm{deg}}=34^{\circ}$

Angle Conversion Examples

- Degree to Radians: $d \cdot \frac{\pi}{180^{\circ}}$

$$
\begin{aligned}
& \alpha_{\mathrm{deg}}=34^{\circ} \\
= & 34^{\circ} \cdot \frac{\pi}{180^{\circ}}
\end{aligned}
$$

Angle Conversion Examples

- Degree to Radians: $d \cdot \frac{\pi}{180^{\circ}}$

$$
\begin{aligned}
& \alpha_{\mathrm{deg}}=34^{\circ} \\
= & 34^{\circ} \cdot \frac{\pi}{180^{\circ}} \\
= & \frac{34^{\circ} \cdot \pi}{180^{\circ}}=\frac{106.81^{\circ}}{180^{\circ}}=0.593=\alpha_{\mathrm{rad}}
\end{aligned}
$$

Angle Conversion Examples

- Degree to Radians: $d \cdot \frac{\pi}{180^{\circ}}$

$$
\begin{aligned}
& \alpha_{\mathrm{deg}}=34^{\circ} \\
= & 34^{\circ} \cdot \frac{\pi}{180^{\circ}} \\
= & \frac{34^{\circ} \cdot \pi}{180^{\circ}}=\frac{106.81^{\circ}}{180^{\circ}}=0.593=\alpha_{\mathrm{rad}}
\end{aligned}
$$

- Radians to Degree: $x \cdot \frac{180^{\circ}}{\pi}$

Angle Conversion Examples

- Degree to Radians: $d \cdot \frac{\pi}{180^{\circ}}$

$$
\begin{aligned}
& \alpha_{\mathrm{deg}}=34^{\circ} \\
= & 34^{\circ} \cdot \frac{\pi}{180^{\circ}} \\
= & \frac{34^{\circ} \cdot \pi}{180^{\circ}}=\frac{106.81^{\circ}}{180^{\circ}}=0.593=\alpha_{\mathrm{rad}}
\end{aligned}
$$

- Radians to Degree: $x \cdot \frac{180^{\circ}}{\pi}$

$$
\alpha_{\mathrm{rad}}=\frac{3}{4} \pi
$$

Angle Conversion Examples

- Degree to Radians: $d \cdot \frac{\pi}{180^{\circ}}$

$$
\begin{aligned}
& \alpha_{\mathrm{deg}}=34^{\circ} \\
= & 34^{\circ} \cdot \frac{\pi}{180^{\circ}} \\
= & \frac{34^{\circ} \cdot \pi}{180^{\circ}}=\frac{106.81^{\circ}}{180^{\circ}}=0.593=\alpha_{\mathrm{rad}}
\end{aligned}
$$

- Radians to Degree: $x \cdot \frac{180^{\circ}}{\pi}$

$$
\begin{aligned}
& \alpha_{\mathrm{rad}}=\frac{3}{4} \pi \\
= & \frac{3}{4} \pi \cdot \frac{180^{\circ}}{\pi}
\end{aligned}
$$

Angle Conversion Examples

- Degree to Radians: $d \cdot \frac{\pi}{180^{\circ}}$

$$
\begin{aligned}
& \alpha_{\mathrm{deg}}=34^{\circ} \\
= & 34^{\circ} \cdot \frac{\pi}{180^{\circ}} \\
= & \frac{34^{\circ} \cdot \pi}{180^{\circ}}=\frac{106.81^{\circ}}{180^{\circ}}=0.593=\alpha_{\mathrm{rad}}
\end{aligned}
$$

- Radians to Degree: $x \cdot \frac{180^{\circ}}{\pi}$

$$
\begin{aligned}
& \alpha_{\mathrm{rad}}=\frac{3}{4} \pi \\
= & \frac{3}{4} \pi \cdot \frac{180^{\circ}}{\pi} \\
= & \frac{3}{4} \cdot 180^{\circ}=135^{\circ}=\alpha_{\mathrm{deg}}
\end{aligned}
$$

Sine and Cosine

- $a^{2}+b^{2}=c^{2}$
$-\sin (\alpha)=\frac{b}{c}=\frac{\text { opposite }}{\text { hypothenuse }}$
- $\cos (\alpha)=\frac{a}{c}=\frac{\text { adjacent }}{\text { hypothenuse }}$
- $\tan (\alpha)=\frac{\sin (\alpha)}{\cos (\alpha)}=\frac{b}{a}=\frac{\text { opposite }}{\text { adjacent }}$

Sine and Cosine

- The sine and cosine of an angle can be interpreted as the x and y coordinates of the location on the unit circle at angle α.

$$
\begin{aligned}
& x=\cos (\alpha) \Longleftrightarrow \alpha=\cos ^{-1}(x) \\
& y=\sin (\alpha) \Longleftrightarrow \alpha=\sin ^{-1}(x)
\end{aligned}
$$

- Click here for interactive demo.

Vectors in the Cartesian Coordinate System

- A vector $\boldsymbol{v}=\binom{v_{x}}{v_{y}}$ is a geometric object that has length and direction
- Think of it as an arrow from the origin to the point $\left(v_{x}, v_{y}\right)$

Vectors in more dimensions

- Vectors can be defined in higher-dimensional coordinate systems as well
- e.g., in 3D: $\boldsymbol{v}=\left(\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right)$

Vector Addition

Scalar Multiplication

$$
s \boldsymbol{a}=s\binom{a_{x}}{a_{y}}=\binom{s a_{x}}{s a_{y}}
$$

Exercise 1

1. Compute the circumference of a circle with radius 2 cm
2. Convert an angle of 45° to radians
3. Convert $\frac{3 \pi}{2}$ radians to degrees
4. Given a right triangle with $a=2, b=3$, compute the angle between a and c
5. Let $\boldsymbol{v}=\binom{3}{2}$ and $\boldsymbol{w}=\binom{1}{3}$. Compute $2(\boldsymbol{v}+\boldsymbol{w})$.

Length of a vector

- The length of a vector can be calculated using the Pythagorean theorem:

$$
\|v\|=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

- Graphical Interpretation:

Scalar Product

- The scalar product $<\boldsymbol{a}, \boldsymbol{b}>$ or $\boldsymbol{a} \cdot \boldsymbol{b}$ of two vectors is defined as:

$$
<\boldsymbol{a}, \boldsymbol{b}>=<\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\ldots
\end{array}\right),\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots
\end{array}\right)>=a_{1} b_{1}+a_{2} b_{2}+\ldots
$$

and results in a scalar value.

Scalar Product

- The scalar product is related to the angle between the two vectors:

$$
<\boldsymbol{a}, \boldsymbol{b}>=|\boldsymbol{a}||\boldsymbol{b}| \cos (\alpha) \Longleftrightarrow \frac{<\boldsymbol{a}, \boldsymbol{b}>}{|\boldsymbol{a}||\boldsymbol{b}|}=\cos (\alpha)
$$

- Graphical Interpretation:

Scalar Product: Special Cases

- If both vectors \boldsymbol{a} and \boldsymbol{b} point in the same direction:

$$
<\boldsymbol{a}, \boldsymbol{b}>=|\boldsymbol{a}||\boldsymbol{b}| \cos (0)=|\boldsymbol{a}||\boldsymbol{b}|
$$

- If both vectors \boldsymbol{a} and \boldsymbol{b} are orthogonal to each other:

$$
<\boldsymbol{a}, \boldsymbol{b}>=|\boldsymbol{a}||\boldsymbol{b}| \cos \left(90^{\circ}\right)=0
$$

Angle between Vectors

- The scalar product can be used to calculate the angle between two vectors

$$
\begin{aligned}
<\boldsymbol{a}, \boldsymbol{b}> & =|\boldsymbol{a}||\boldsymbol{b}| \cos (\alpha) \\
\alpha & =\cos ^{-1}\left(\frac{<\boldsymbol{a}, \boldsymbol{b}>}{|\boldsymbol{a}||\boldsymbol{b}|}\right) \\
\alpha & =\cos ^{-1}\left(\frac{1 * 1+1 * 0}{\sqrt{2} * 1}\right) \\
\alpha & =\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
\mathrm{x} & \alpha=\frac{\pi}{4}=45^{\circ}
\end{aligned}
$$

Exercise 2

1. Let $\boldsymbol{v}=\binom{3}{2}$ and $\boldsymbol{w}=\binom{1}{3}$. Compute the scalar product $\langle v, w\rangle$ and the vector lengths $\|v\|$ and $\|w\|$. Next, find the angle between these two vectors.
2. Compute $3<2\left(w+\binom{1}{-4}\right),\binom{-2}{-2}>$
3. (optional) Write a python function that can find the angle between two vectors, given as lists. Test the program on the vectors of exercise 1 .

Matrices

- A matrix is an array or table of numbers arranged in rows and columns:

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
1.5 & 2.5 & 4 \\
-1 & 3 & 2 \\
0 & -5 & 2
\end{array}\right)
$$

Motivation: Linear transformation

- Matrices can specify linear transformations
- The n-th column of the matrix is a vector that specifies to where the n-th dimension of space is mapped (direction and scaling/compression factor)

Rotation by 45°

$$
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Scaling

$$
\left(\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right)
$$

Matrix-vector multiplication

- Vectors can be multiplied by a matrix, which applies the transformation:

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{x}{y}=x\binom{a_{11}}{a_{21}}+y\binom{a_{12}}{a_{22}}=\binom{a_{11} x+a_{12} y}{a_{21} x+a_{21} y}
$$

Rotation by 45°
$\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)\binom{1.0}{0.4}$

Scaling

$$
\left(\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right)\binom{1.0}{0.4}
$$

Matrix-vector multiplication

- This works with an arbitrary number of dimensions:

$$
\begin{aligned}
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =x\left(\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right)+y\left(\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right)+z\left(\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right) \\
& =\left(\begin{array}{l}
a_{11} x+a_{12} y+a_{13} z \\
a_{21} x+a_{22} y+a_{23} z \\
a_{31} x+a_{32} y+a_{33} z
\end{array}\right)
\end{aligned}
$$

Matrix addition

- Matrices can be added:

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 2 \\
3 & 2 & 4 \\
1 & 5 & 7
\end{array}\right)+\left(\begin{array}{ccc}
2 & 1 & 4 \\
6 & 0 & -3 \\
0 & -5 & 2
\end{array}\right) \\
=\left(\begin{array}{lll}
1+2 & 0+1 & 2+4 \\
3+6 & 2+0 & 4-3 \\
1+0 & 5-5 & 7+2
\end{array}\right) \\
=\left(\begin{array}{lll}
3 & 1 & 6 \\
9 & 2 & 1 \\
1 & 0 & 9
\end{array}\right)
\end{gathered}
$$

Scalar multiplication

- Matrices can be multiplied by a scalar:

$$
2 \cdot\left(\begin{array}{lll}
1 & 0 & 2 \\
3 & 2 & 4 \\
1 & 5 & 7
\end{array}\right)=\left(\begin{array}{ccc}
2 \cdot 1 & 2 \cdot 0 & 2 \cdot 2 \\
2 \cdot 3 & 2 \cdot 2 & 2 \cdot 4 \\
2 \cdot 1 & 2 \cdot 5 & 2 \cdot 7
\end{array}\right)=\left(\begin{array}{ccc}
2 & 0 & 4 \\
6 & 4 & 8 \\
2 & 10 & 14
\end{array}\right)
$$

Matrix multiplication

- Matrices can be multiplied with each other:

$$
\begin{gathered}
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{11} & b_{32} & b_{33}
\end{array}\right) \\
=\left(\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31}
\end{array}\right),\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right),\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right)\right)
\end{gathered}
$$

- Note: a vector is also a matrix
- matrix-vector multiplication is a special case of matrix-matrix multiplication

Matrix multiplication

- Linear transformations can be composed by multiplication

Example: Rotation followed by scaling

$$
\left(\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{cc}
\frac{0.5}{\sqrt{2}} & -\frac{0.5}{\sqrt{2}} \\
\frac{0.5}{\sqrt{2}} & \frac{0.5}{\sqrt{2}}
\end{array}\right)
$$

Exercise 3

1. Create a 2×2 matrix that scales a vector by 2 along the first dimension and by 0.5 along the second dimension. Test the matrix by scaling the vector $\binom{5}{10}$.
2. Compute $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 5 & 2 & 1\end{array}\right)\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$
3. Compute $2\left(\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)+\left(\begin{array}{cc}3 & -1 \\ 2 & 2\end{array}\right)\right)$
4. Create a matrix that rotates a vector by 90° by composing the rotation matrix for 45° rotations two times.
5. (optional) Create a matrix that rotates a vector by 270°. Do not calculate such a matrix by composing it of other matrices. Instead, directly write down the required matrix entries. Start by thinking about what this rotation means geometrically.
6. (optional) Write a python program that can multiply a vector by a matrix. Represent the vector as a list and the matrix as a list of lists, where each inner
