Mathematics and Computer Science for Modeling Unit 4: Calculus

Daniel Sabinasz
based on materials by Jan Tekülve and Daniel Sabinasz
Institut für Neuroinformatik, Ruhr-Universität Bochum

September 29, 2023

Overview

1. Motivation

2. Differentiation

> Graphical Interpretation
> Formal Description
> Rules for Differentiation

3. Exercises

Motivation

Estimating Velocity by Differentiation

The Vehicle's Position

Exercise 1

1. Calculate the change of position between time 3 and 4 . Next, calculate the rate of change of the position (= velocity) between time 3 and 4.
2. Do the same for the time between 3 and 5.
3. Now assume that the position is given as $f(t)=t^{2}$. Plot that function from time 0 to 3 . Calculate the velocity between time 0 and 2 . Draw a line through the points $(0, f(0))$ and $(2, f(2))$. How does the slope of the line relate to the velocity? Why? Next, do the same for the velocity between time 1 and 2 , then between time 1.5 and 2 .
4. Think about what it would mean to calculate the velocity at time 2 .

1. Motivation

2. Differentiation

- Graphical Interpretation
- Formal Description
> Rules for Differentiation

3. Exercises

A function and its derivative

- The derivative of a function $f(x)$, denoted $f^{\prime}(x)$, measures the degree to which $f(x)$ changes when x changes

$$
f(x)=x \quad f^{\prime}(x)=1
$$

A function and its derivative

- The derivative of a function $f(x)$, denoted $f^{\prime}(x)$, measures the degree to which $f(x)$ changes when x changes
- $f^{\prime}(x)$ is the slope of the tangent at x

$$
f(x)=x^{2} \quad f^{\prime}(x)=2 x
$$

A function and its derivative

$$
f(x)=0.5 \quad f^{\prime}(x)=0
$$

A function and its derivative

Derivative as a Tangent

$$
f(x)=\sin (x) \quad f^{\prime}(x)=\cos (x)
$$

Derivative as a Tangent

Derivative as a Tangent

Formal Definition

Differentiable Function

- The derivative of f at position x_{0}, short $f^{\prime}(x)$, is defined as

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- This denotes the value of $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ as x gets closer and closer to x_{0}.

Formal Definition

Differentiable Function

- The derivative of f at position x_{0}, short $f^{\prime}(x)$, is defined as

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- This denotes the value of $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ as x gets closer and closer to x_{0}.
- f is called differentiable if and only if this limit exists.

Formal Definition

Differentiable Function

- The derivative of f at position x_{0}, short $f^{\prime}(x)$, is defined as

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- This denotes the value of $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ as x gets closer and closer to x_{0}.
- f is called differentiable if and only if this limit exists.
- Alternate notations:

$$
f^{\prime}(x)=\frac{d f}{d x}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Differentiation as Limit Example

- Statement: The derivative of $f(x)=x^{2}$ is $f^{\prime}(x)=2 x$

Differentiation as Limit Example

- Statement: The derivative of $f(x)=x^{2}$ is $f^{\prime}(x)=2 x$
- Applying the formula

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{x^{2}-x_{0}^{2}}{x-x_{0}}
$$

Differentiation as Limit Example

- Statement: The derivative of $f(x)=x^{2}$ is $f^{\prime}(x)=2 x$
- Applying the formula

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{x^{2}-x_{0}^{2}}{x-x_{0}}
$$

- Simplifying

$$
\lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right)\left(x+x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right)\left(x+x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}}\left(x+x_{0}\right)
$$

Differentiation as Limit Example

- Statement: The derivative of $f(x)=x^{2}$ is $f^{\prime}(x)=2 x$
- Applying the formula

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{x^{2}-x_{0}^{2}}{x-x_{0}}
$$

- Simplifying

$$
\lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right)\left(x+x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right)\left(x+x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}}\left(x+x_{0}\right)
$$

- Applying the limit:

$$
\lim _{x \rightarrow x_{0}}\left(x+x_{0}\right)=2 x
$$

Differentiation is a linear operator

Rules

- Constant Factor

$$
\frac{d}{d x}(a f)=a \frac{d}{d x}(f)
$$

- Sums

$$
\frac{d}{d x}(f+g)=\frac{d}{d x}(f)+\frac{d}{d x}(g)
$$

Example:

$$
\frac{d}{d x}\left(4 x^{2}\right)=4 \frac{d}{d x}\left(x^{2}\right)=4(2 x)=8 x
$$

Differentiation is a linear operator

Rules

- Constant Factor

$$
\frac{d}{d x}(a f)=a \frac{d}{d x}(f)
$$

- Sums

$$
\frac{d}{d x}(f+g)=\frac{d}{d x}(f)+\frac{d}{d x}(g)
$$

Example:

$$
\begin{aligned}
\frac{d}{d x}\left(4 x^{2}\right) & =4 \frac{d}{d x}\left(x^{2}\right)=4(2 x)=8 x \\
\frac{d}{d x}\left(4 x^{2}+x^{2}\right) & =4 \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(x^{2}\right)=4(2 x)+2 x=10 x
\end{aligned}
$$

Differentiation for Products and Quotients

Rules

- Multiplication

$$
\frac{d}{d x}(f g)=\frac{d}{d x}(f) g+f \frac{d}{d x}(g)
$$

- Exponentiation

$$
\frac{d}{d x}\left(f^{n}\right)=n \frac{d}{d x}(f)^{n-1}
$$

- Division

$$
\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{\frac{d}{d x}(f) g-f \frac{d}{d x}(g)}{g^{2}}
$$

Examples

- Multiplication

$$
\frac{d}{d x}\left(x^{2} \sin (x)\right)=\frac{d}{d x}\left(x^{2}\right) \sin (x)+x^{2} \frac{d}{d x}(\sin (x))=2 x \sin (x)+x^{2} \cos (x)
$$

Examples

- Multiplication

$$
\frac{d}{d x}\left(x^{2} \sin (x)\right)=\frac{d}{d x}\left(x^{2}\right) \sin (x)+x^{2} \frac{d}{d x}(\sin (x))=2 x \sin (x)+x^{2} \cos (x)
$$

- Division

$$
\frac{d}{d x}\left(\frac{1}{x}\right)=\frac{\frac{d}{d x}(1) x-1 \frac{d}{d x}(x)}{x^{2}}=\frac{0-1}{x^{2}}=\frac{-1}{x^{2}}
$$

Exponentiation Rule derives from Multiplication Rule

- Example $f^{\prime}\left(x^{3}\right)$

$$
\frac{d}{d x}\left(x^{3}\right)=\frac{d}{d x}\left(x^{2} x\right)=\frac{d}{d x}\left(x^{2}\right) x+x^{2} \frac{d}{d x}(x)
$$

Exponentiation Rule derives from Multiplication Rule

- Example $f^{\prime}\left(x^{3}\right)$

$$
\begin{aligned}
\frac{d}{d x}\left(x^{3}\right) & =\frac{d}{d x}\left(x^{2} x\right)=\frac{d}{d x}\left(x^{2}\right) x+x^{2} \frac{d}{d x}(x) \\
& =2 x x+x^{2}=3 x^{2}
\end{aligned}
$$

Exponentiation Rule derives from Multiplication Rule

- Example $f^{\prime}\left(x^{3}\right)$

$$
\begin{aligned}
\frac{d}{d x}\left(x^{3}\right) & =\frac{d}{d x}\left(x^{2} x\right)=\frac{d}{d x}\left(x^{2}\right) x+x^{2} \frac{d}{d x}(x) \\
& =2 x x+x^{2}=3 x^{2}
\end{aligned}
$$

- Example $f^{\prime}\left(x^{4}\right)$

$$
\frac{d}{d x}\left(x^{4}\right)=\frac{d}{d x}\left(x^{2} x^{2}\right)=\frac{d}{d x}\left(x^{2}\right) x^{2}+x^{2} \frac{d}{d x}\left(x^{2}\right)
$$

Exponentiation Rule derives from Multiplication Rule

- Example $f^{\prime}\left(x^{3}\right)$

$$
\begin{aligned}
\frac{d}{d x}\left(x^{3}\right) & =\frac{d}{d x}\left(x^{2} x\right)=\frac{d}{d x}\left(x^{2}\right) x+x^{2} \frac{d}{d x}(x) \\
& =2 x x+x^{2}=3 x^{2}
\end{aligned}
$$

- Example $f^{\prime}\left(x^{4}\right)$

$$
\begin{aligned}
\frac{d}{d x}\left(x^{4}\right) & =\frac{d}{d x}\left(x^{2} x^{2}\right)=\frac{d}{d x}\left(x^{2}\right) x^{2}+x^{2} \frac{d}{d x}\left(x^{2}\right) \\
& =2 x x^{2}+x^{2} 2 x=2 x^{3}+2 x^{3}=4 x^{3}
\end{aligned}
$$

Special cases

- The derivative of

$$
f(x)=e^{x} \text { is } f^{\prime}(x)=e^{x}
$$

- The derivative of

$$
f(x)=\ln (x) \text { is } f^{\prime}(x)=\frac{1}{x}
$$

- The derivative of

$$
f(x)=\sin (x) \text { is } f^{\prime}(x)=\cos (x)
$$

Composite functions

Chain Rule

- Function h is a composition of functions g and f

$$
h(x)=(g \circ f)(x)=g(f(x))
$$

- Iff and g are differentiable, h is also differentiable

$$
\frac{d}{d x}(h(x))=\frac{d}{d x}(g(y)) \frac{d}{d x}(f(x)), \text { with } y=f(x)
$$

- Verbal rule: Inner derivative times outer derivative

Chain Rule Examples

- $h(x)=5(7 x+2)^{4}=g(f(x))$

Chain Rule Examples

- $h(x)=5(7 x+2)^{4}=g(f(x))$

$$
g(x)=5 x^{4} \wedge f(x)=7 x+2
$$

Chain Rule Examples

- $h(x)=5(7 x+2)^{4}=g(f(x))$

$$
\begin{aligned}
g(x) & =5 x^{4} \wedge f(x)=7 x+2 \\
g^{\prime}(x) & =20 x^{3} \wedge f^{\prime}(x)=7
\end{aligned}
$$

Chain Rule Examples

- $h(x)=5(7 x+2)^{4}=g(f(x))$

$$
\begin{aligned}
g(x) & =5 x^{4} \wedge f(x)=7 x+2 \\
g^{\prime}(x) & =20 x^{3} \wedge f^{\prime}(x)=7 \\
h^{\prime}(x) & =20(7 x+2)^{3} 7=140(7 x+2)^{3}
\end{aligned}
$$

Chain Rule Examples

- $h(x)=5(7 x+2)^{4}=g(f(x))$

$$
\begin{aligned}
g(x) & =5 x^{4} \wedge f(x)=7 x+2 \\
g^{\prime}(x) & =20 x^{3} \wedge f^{\prime}(x)=7 \\
h^{\prime}(x) & =20(7 x+2)^{3} 7=140(7 x+2)^{3}
\end{aligned}
$$

- $h(x)=e^{5 x}=g(f(x))$

Chain Rule Examples

- $h(x)=5(7 x+2)^{4}=g(f(x))$

$$
\begin{aligned}
& g(x)=5 x^{4} \wedge f(x)=7 x+2 \\
& g^{\prime}(x)=20 x^{3} \wedge f^{\prime}(x)=7 \\
& h^{\prime}(x)=20(7 x+2)^{3} 7=140(7 x+2)^{3}
\end{aligned}
$$

- $h(x)=e^{5 x}=g(f(x))$

$$
g(x)=e^{x} \wedge f(x)=5 x
$$

Chain Rule Examples

- $h(x)=5(7 x+2)^{4}=g(f(x))$

$$
\begin{aligned}
& g(x)=5 x^{4} \wedge f(x)=7 x+2 \\
& g^{\prime}(x)=20 x^{3} \wedge f^{\prime}(x)=7 \\
& h^{\prime}(x)=20(7 x+2)^{3} 7=140(7 x+2)^{3}
\end{aligned}
$$

- $h(x)=e^{5 x}=g(f(x))$

$$
\begin{aligned}
& g(x)=e^{x} \wedge f(x)=5 x \\
& g^{\prime}(x)=e^{x} \wedge f^{\prime}(x)=5
\end{aligned}
$$

Chain Rule Examples

- $h(x)=5(7 x+2)^{4}=g(f(x))$

$$
\begin{aligned}
& g(x)=5 x^{4} \wedge f(x)=7 x+2 \\
& g^{\prime}(x)=20 x^{3} \wedge f^{\prime}(x)=7 \\
& h^{\prime}(x)=20(7 x+2)^{3} 7=140(7 x+2)^{3}
\end{aligned}
$$

- $h(x)=e^{5 x}=g(f(x))$

$$
\begin{aligned}
g(x) & =e^{x} \wedge f(x)=5 x \\
g^{\prime}(x) & =e^{x} \wedge f^{\prime}(x)=5 \\
h^{\prime}(x) & =e^{5 x} 5=5 e^{5 x}
\end{aligned}
$$

Finding Local Extrema

Finding Local Extrema

Calculation of Local Extrema

$-f(x)=4 x^{2}+6 x$

Calculation of Local Extrema

- $f(x)=4 x^{2}+6 x$

$$
f^{\prime}(x)=8 x+6
$$

Calculation of Local Extrema

- $f(x)=4 x^{2}+6 x$

$$
\begin{aligned}
& f^{\prime}(x)=8 x+6 \\
& f^{\prime}(x)=8 x+6 \stackrel{!}{=} 0
\end{aligned}
$$

Calculation of Local Extrema

- $f(x)=4 x^{2}+6 x$

$$
\begin{aligned}
& f^{\prime}(x)=8 x+6 \\
& f^{\prime}(x)=8 x+6 \stackrel{!}{=} 0 \\
& \Longleftrightarrow 8 x=-6
\end{aligned}
$$

Calculation of Local Extrema

- $f(x)=4 x^{2}+6 x$

$$
f^{\prime}(x)=8 x+6
$$

$$
f^{\prime}(x)=8 x+6 \stackrel{!}{=} 0
$$

$$
\Longleftrightarrow 8 x=-6
$$

$$
\Longleftrightarrow x=\frac{-6}{8}=\frac{-3}{4}
$$

Calculation of Local Extrema

- $f(x)=4 x^{2}+6 x$
$f^{\prime}(x)=8 x+6$
$f^{\prime}(x)=8 x+6 \stackrel{!}{=} 0$
$\Longleftrightarrow 8 x=-6$
$\Longleftrightarrow x=\frac{-6}{8}=\frac{-3}{4}$
- $f(x)=\sin (x)$

Calculation of Local Extrema

- $f(x)=4 x^{2}+6 x$
$f^{\prime}(x)=8 x+6$
$f^{\prime}(x)=8 x+6 \stackrel{!}{=} 0$
$\Longleftrightarrow 8 x=-6$
$\Longleftrightarrow x=\frac{-6}{8}=\frac{-3}{4}$
- $f(x)=\sin (x)$

$$
f^{\prime}(x)=\cos (x)
$$

Calculation of Local Extrema

- $f(x)=4 x^{2}+6 x$
$f^{\prime}(x)=8 x+6$
$f^{\prime}(x)=8 x+6 \stackrel{!}{=} 0$
$\Longleftrightarrow 8 x=-6$
$\Longleftrightarrow x=\frac{-6}{8}=\frac{-3}{4}$
- $f(x)=\sin (x)$

$$
\begin{aligned}
& f^{\prime}(x)=\cos (x) \\
& f^{\prime}(x)=\cos (x) \stackrel{!}{=} 0
\end{aligned}
$$

Calculation of Local Extrema

- $f(x)=4 x^{2}+6 x$
$f^{\prime}(x)=8 x+6$
$f^{\prime}(x)=8 x+6 \stackrel{!}{=} 0$
$\Longleftrightarrow 8 x=-6$
$\Longleftrightarrow x=\frac{-6}{8}=\frac{-3}{4}$
- $f(x)=\sin (x)$

$$
\begin{aligned}
& f^{\prime}(x)=\cos (x) \\
& f^{\prime}(x)=\cos (x) \stackrel{!}{=} 0 \\
& \Longleftrightarrow x=\cos ^{-1}(0)
\end{aligned}
$$

Calculation of Local Extrema

- $f(x)=4 x^{2}+6 x$

$$
f^{\prime}(x)=8 x+6
$$

$$
f^{\prime}(x)=8 x+6 \stackrel{!}{=} 0
$$

$$
\Longleftrightarrow 8 x=-6
$$

$$
\Longleftrightarrow x=\frac{-6}{8}=\frac{-3}{4}
$$

- $f(x)=\sin (x)$

$$
\begin{aligned}
& f^{\prime}(x)=\cos (x) \\
& f^{\prime}(x)=\cos (x) \stackrel{!}{=} 0 \\
& \Longleftrightarrow x=\cos ^{-1}(0)
\end{aligned}
$$

$$
\Longleftrightarrow x=90^{\circ}=\frac{\pi}{2}, 270^{\circ}=\frac{3 \pi}{2}, \ldots
$$

Differentiability is not given

$$
f(x)=\frac{1}{x}
$$

$$
f^{\prime}(x)=\frac{-1}{x^{2}}
$$

Exercise 2

1. Calculate the derivative of the following functions (on a piece of paper)

$$
\begin{aligned}
& 1.1 f(x)=7 x^{4} \\
& 1.2 g(x)=2 x^{4}+3 x^{3}+x^{2}+10 x+5 \\
& 1.3 \quad h(x)=4 e^{3 x} \\
& 1.4 \quad i(x)=\left(12 x^{2}+5\right) 3 x^{3} \\
& 1.5 \quad j(x)=\frac{3 x}{\cos (x)}
\end{aligned}
$$

- First think about the rule you need to use
- Identify the parts of the rule in the equation
- If possible differentiate individual parts first
- Apply the rule

2. Find the extreme value of the function $k(x)=6 x^{2}+3 x+2$
