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Neural Dynamics

® dynamic neural “networks” consisting of one or
two neurons
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Neural dynamic networks
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Neural fields
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B forward connectivity
predicts/models tuning
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® forward connectivity thus
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Neural fields
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information, probability, certainty

fields defined over * +.cvation
. field
continuous spaces
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dimension
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» metric contents

e.g., space, movement

® homologous to sensory surfaces, e.g., visual or B o
auditory space (retinal, allocentric, ...)

parameters, ...

® homologous to motor surfaces, e.g., saccadic end-
points or direction of movement of the end-
effector in outer space

® feature spaces, e.g., localized visual orientations,
color; impedance, ...

M abstract spaces, e.g., ordinal space, along which
serial order is represented



Example motion perception:
space of possible percepts
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Activation patterns representing
different percepts
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Example: movement planning: space
of possible actions
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Activation fields... peaks as units
of representation

information, probability, certainty
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Time courses of activation fields
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Activation patterns representing
states of motor decision making

® bi-modal distribution of activation over movement
direction in pre-motor cortex before a selection
decision is made

® mono-modal distribution once the decision is made

N=100

Caudal PMd Rostral PMd
N=101

2-target task

M1
N=33

500 1000 ms 500 1000 ms

[Cisek, Kalaska: Neuron 2005]



Neural dynamics of fields

M Peaks as stable states =attractors

® from intra-field interaction: local excitation/global

inhibition
w(x-x) A
_/ o

>

activation field u(x)

local excitation: stabilizes

m peaks against decay

global inhibition: stabilizes
eaks against diffusion

“\SN .
7 \InPUt

>

dimension, x



mathematical formalization

Amari equation
ri(z,t) = —u(z,t) + h+ Sz, t) + / w(z — 2)o(u(@, 1)) dr’

where
e time scale is 7
e resting level is h < 0
e input is S(x,1)

e Interaction kernel is




Interaction: convolution
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OXFORD SERIES IN DEVELOPMENTAL COONITIVE NEUROSCIENCE
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Attractors and their instabilities

reverse
detection detection

instability instability

M input driven solution (sub-
threshold) l

M self-stabilized solution
(peak, supra-threshold)

M selection / selection
instability

® working memory /

memory instability Noise is critical

® boost-driven detection (only) near instabilities
instability



Relationship to the dynamics of
discrete activation variables
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Detection
instability
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The detection instability stabilizes
decisions
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The detection instability stabilizes
detection decisions

Mself-stabilized peaks are macroscopic neuronal
states, capable of impacting on down-stream
neuronal systems

M (unlike the microscopic neuronal activation that
just exceeds a threshold)



The detection instability leads to
the emergence of events

Bthe detection instability
explains how a time-
continuous neuronal dynamics
may create macroscopic
events at discrete moments in
time

u(t)
A
reverse
detection P
mstaflllty ‘f‘f‘f“
,»/ ’ time, t
: detection
instability




behavioral signatures of
detection decisions

B detection in psychophysical paradigms is rife with
hysteresis

B but: minimize response bias



Detection instability

B in the detection
of Generalized
Apparent Motion
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Detection instability

Frame 1
Lm = L1 + L2
2
Ivarying Background-Relative
Frame 2 - L1 - L2
BRLC Luminance Change =

(BRLC) Lm - Lb

Frame 3




Detection instability

B hysteresis of motion detection as BRLC is varied

B (while response bias is minimized)

H. S. Hock, G. Schoner / Seeing and Perceiving 23 (2010) 173195
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Contrast detection

Loss of Visibility Luminance (cd/m2)

[Hock, Schoner, under revision]
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Hysteresis in contrast detection

M ascending trials: increase luminance in steps, ending unpredictably...
report contrast or not

B descending trials: decrease luminance in steps, ending unpredictably

B report change over initial percept (modified method of limits)

B object a 4 minutes distance
suppresses probe detection at
lowest luminance

-
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M also helps to localize attention!
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B between presentations, the object/
probe pair jumps around on the
screen unpredictably by < | deg .~
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Conclusion

M even the simplest of decisions=detection in
the simplest settings (contrast) is state
dependent...

B consistent with the notion of a detection
instability at the basis of perception



