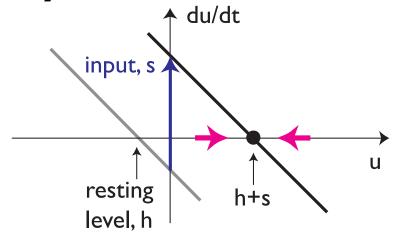
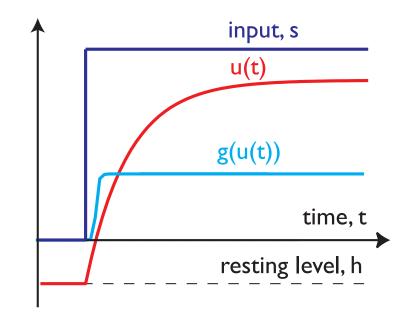
Dynamic Field Theory: Detection decisions

Gregor Schöner

Recall: neural dynamics



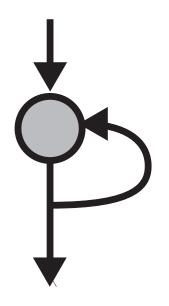
activation dynamics of individual "neurons"

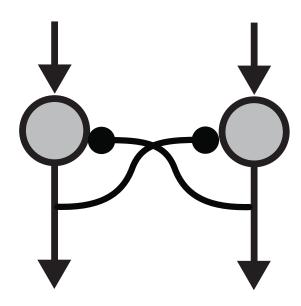


$$\tau \dot{u}(t) = -u(t) + h + inputs(t)$$

Neural Dynamics

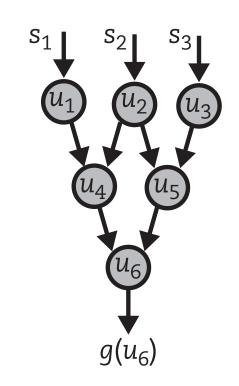
dynamic neural "networks" consisting of one or two neurons

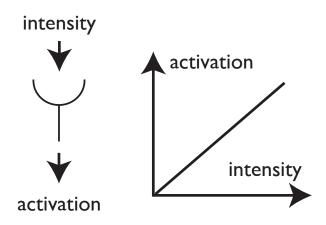




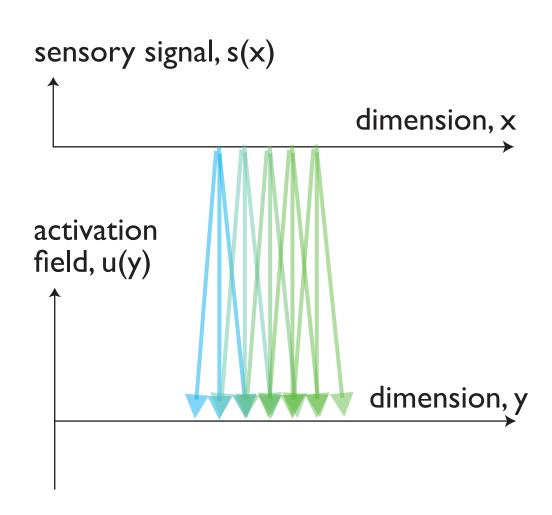
Neural dynamic networks

- ■in networks neural activation variables, the forward connectivity determines "what a neuron stands for"
- = space code (or labelled line code)
- ■in rate code, the activation level "stands for" something, e.g. a sensed intensity
- generic neural networks combine both codes

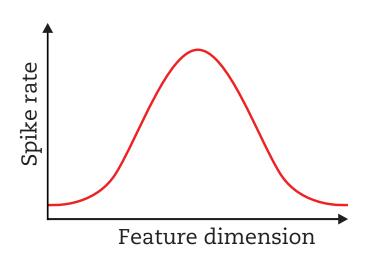


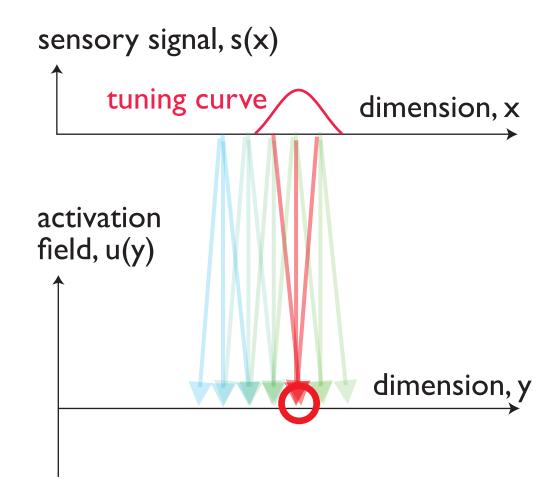


forward connectivity from the sensory surface extracts perceptual feature dimension

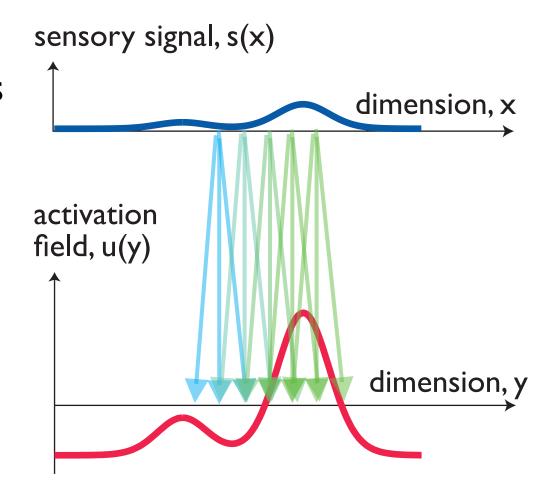


forward connectivity predicts/models tuning curves





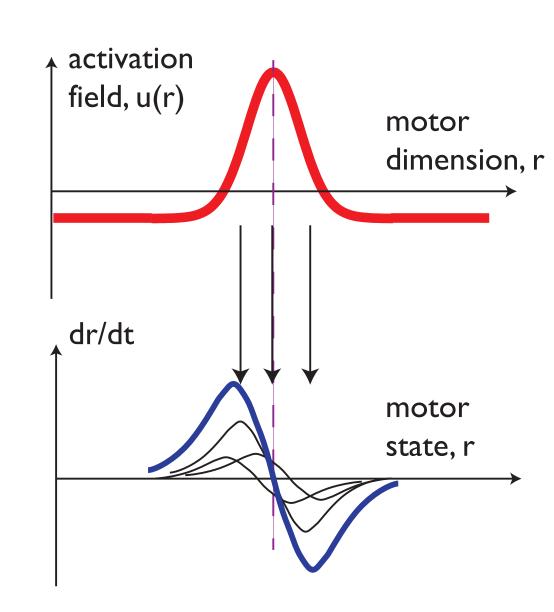
- forward connectivity thus generates a map from sensory surface to feature dimension
- neglect the sampling by individual neurons => activation fields



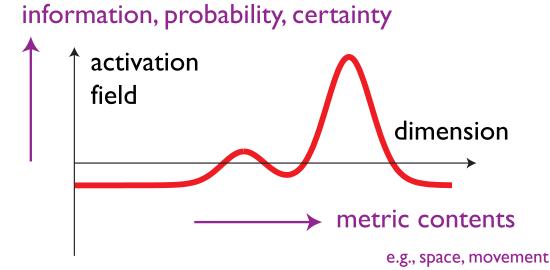
gous notion for and connectivity to resurfaces...

ally involves vioral dynamics)

through neural oscillators peripheral reflex loops)



fields defined over continuous spaces

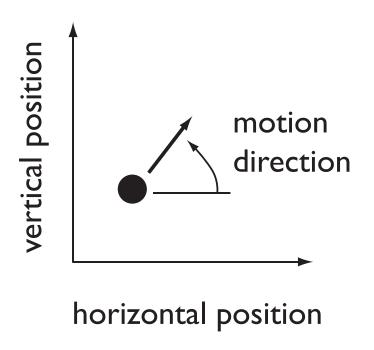


parameters, feature dimensions, viewing

parameters, ...

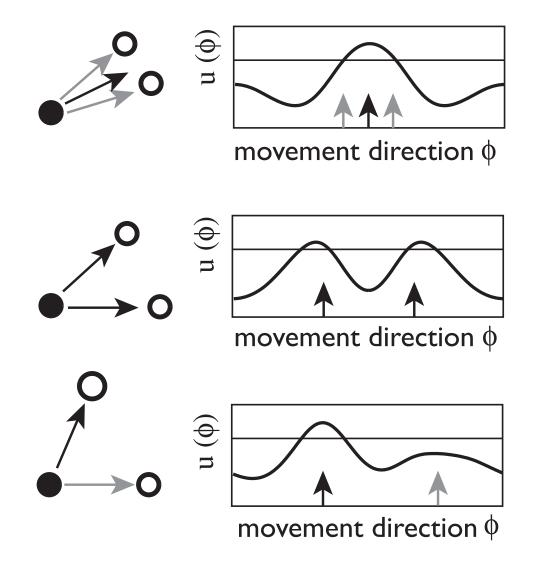
- homologous to sensory surfaces, e.g., visual or auditory space (retinal, allocentric, ...)
- homologous to motor surfaces, e.g., saccadic endpoints or direction of movement of the endeffector in outer space
- feature spaces, e.g., localized visual orientations, color, impedance, ...
- abstract spaces, e.g., ordinal space, along which serial order is represented

Example motion perception: space of possible percepts

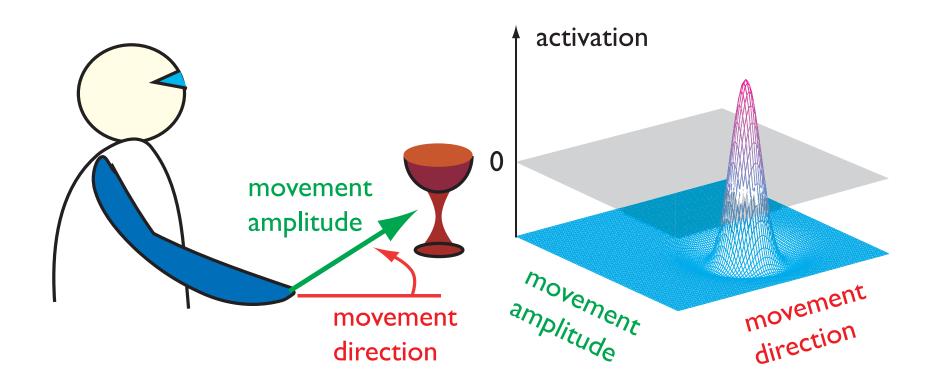




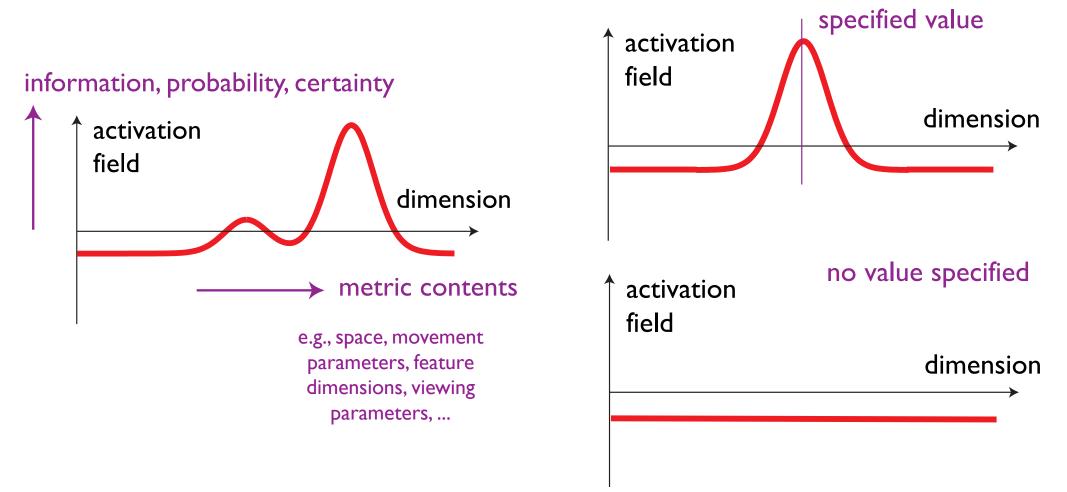
Activation patterns representing different percepts



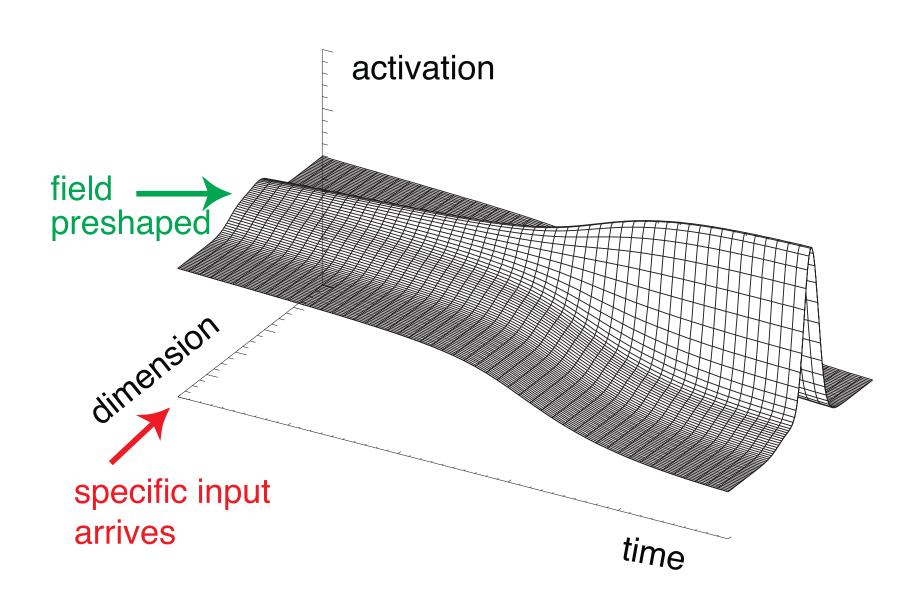
Example: movement planning: space of possible actions



Activation fields... peaks as units of representation

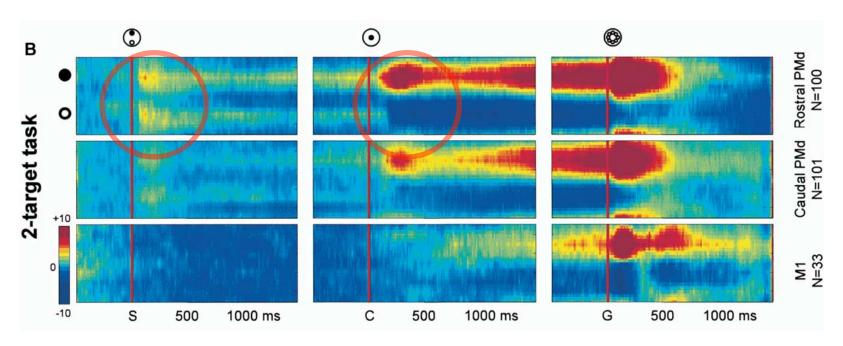


Time courses of activation fields



Activation patterns representing states of motor decision making

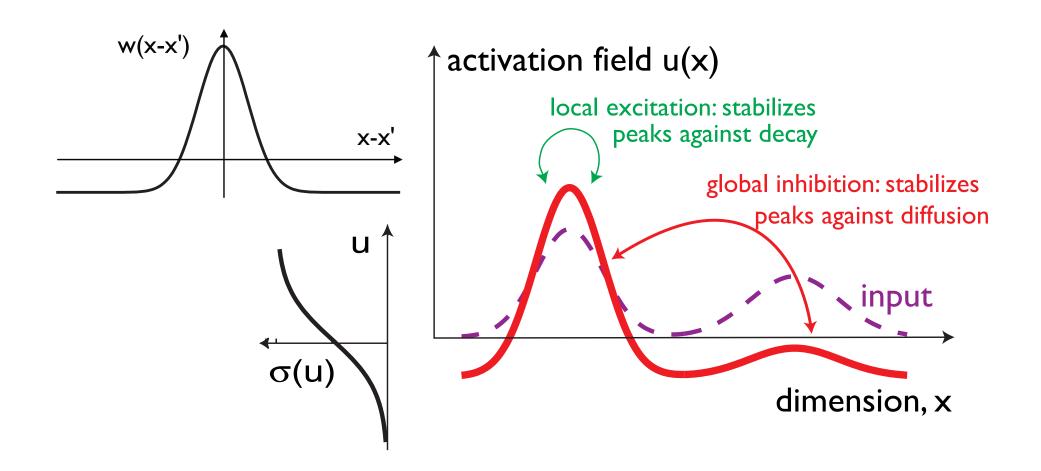
- bi-modal distribution of activation over movement direction in pre-motor cortex before a selection decision is made
- mono-modal distribution once the decision is made



[Cisek, Kalaska: Neuron 2005]

Neural dynamics of fields

- Peaks as stable states =attractors
- from intra-field interaction: local excitation/global inhibition



mathematical formalization

Amari equation

$$\tau \dot{u}(x,t) = -u(x,t) + h + S(x,t) + \int w(x-x')\sigma(u(x',t)) dx'$$

where

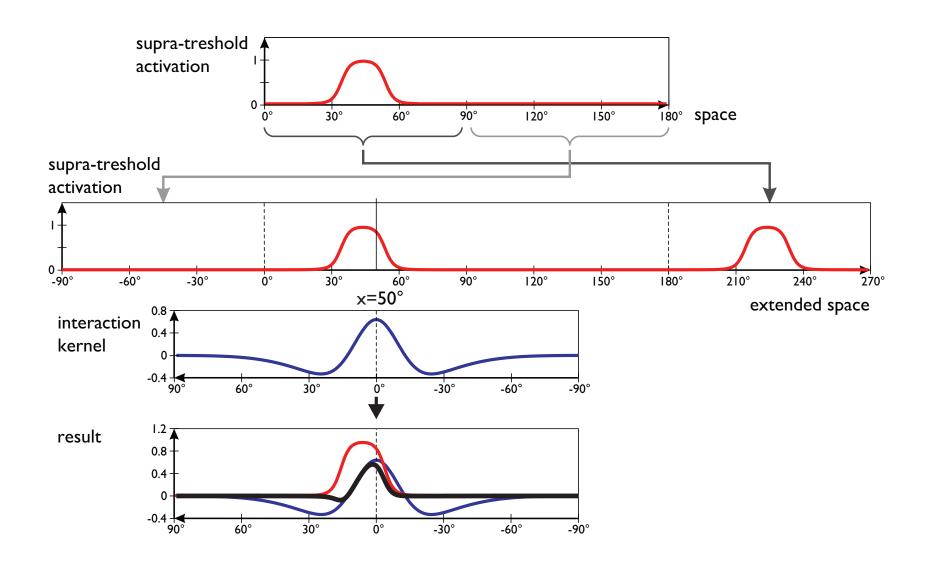
- time scale is τ
- resting level is h < 0
- input is S(x,t)
- interaction kernel is

$$w(x - x') = w_i + w_e \exp\left[-\frac{(x - x')^2}{2\sigma_i^2}\right]$$

• sigmoidal nonlinearity is

$$\sigma(u) = \frac{1}{1 + \exp[-\beta(u - u_0)]}$$

Interaction: convolution



OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

dynamicfieldtheory.org

Dynamic Thinking

A PRIMER ON DYNAMIC FIELD THEORY

Gregor Schöner, John P. Spencer, and the DFT Research Group

=> simulation

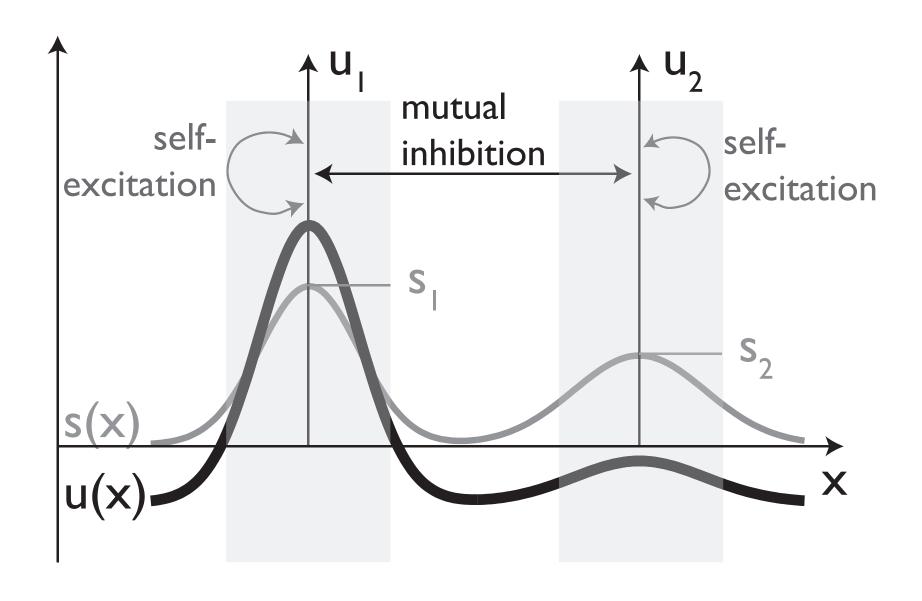
Attractors and their instabilities

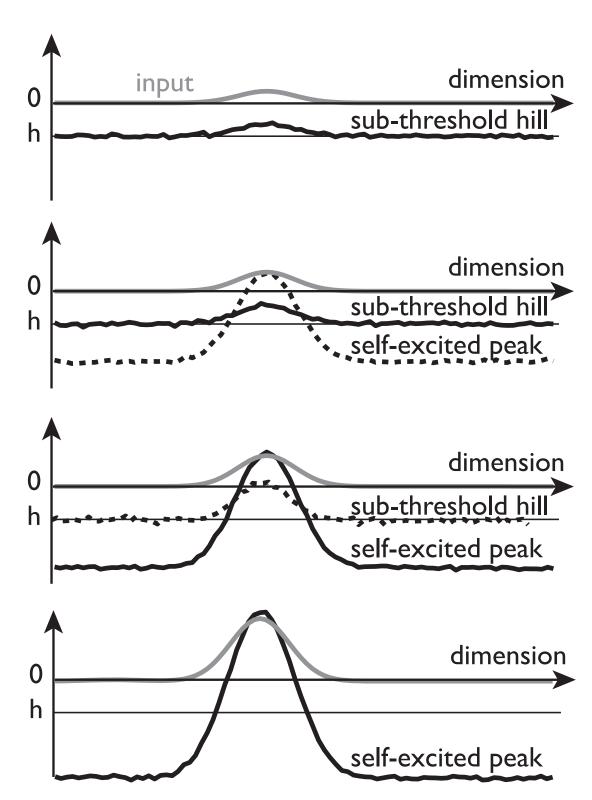
- input driven solution (subthreshold)
- self-stabilized solution (peak, supra-threshold)
- selection / selection instability
- working memory / memory instability
- boost-driven detection instability

detection instability reverse detection instability

Noise is critical (only) near instabilities

Relationship to the dynamics of discrete activation variables

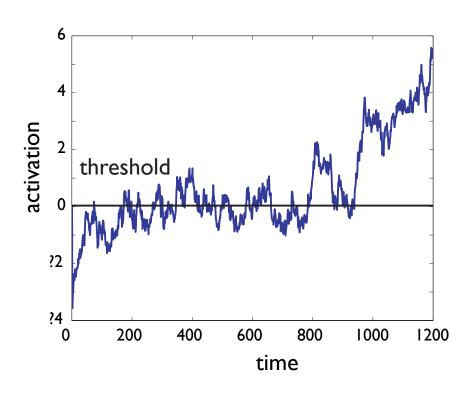




The detection instability stabilizes decisions

threshold piercing

detection instability



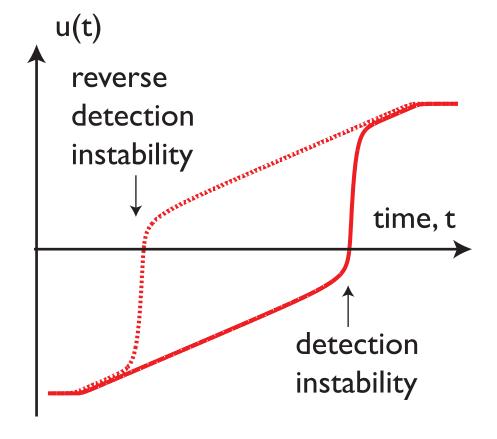


The detection instability stabilizes detection decisions

- self-stabilized peaks are macroscopic neuronal states, capable of impacting on down-stream neuronal systems
- (unlike the microscopic neuronal activation that just exceeds a threshold)

The detection instability leads to the emergence of events

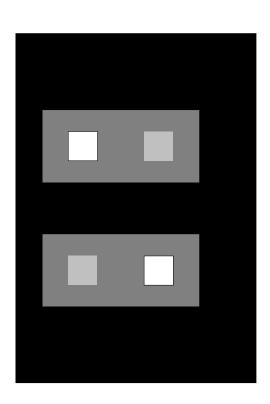
the detection instability explains how a timecontinuous neuronal dynamics may create macroscopic events at discrete moments in time

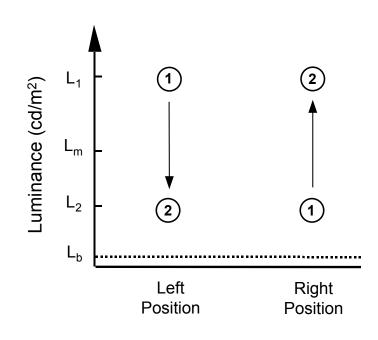


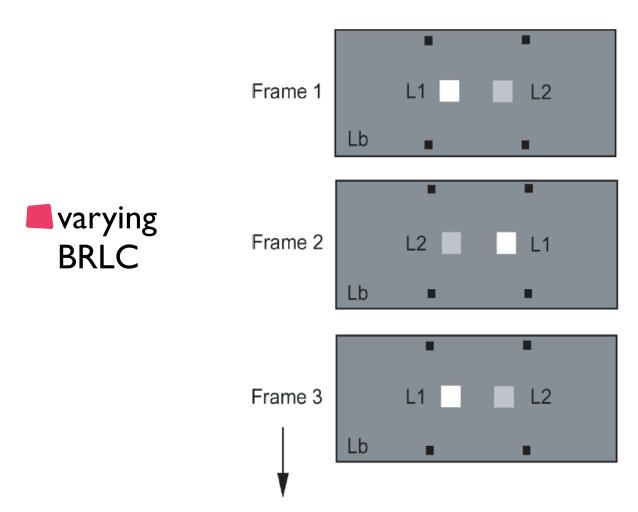
behavioral signatures of detection decisions

- detection in psychophysical paradigms is rife with hysteresis
- but: minimize response bias

in the detection of Generalized Apparent Motion





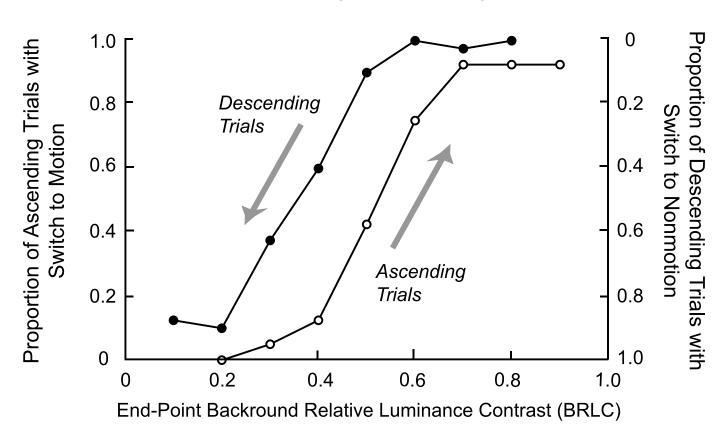


$$Lm = \frac{L1 + L2}{2}$$

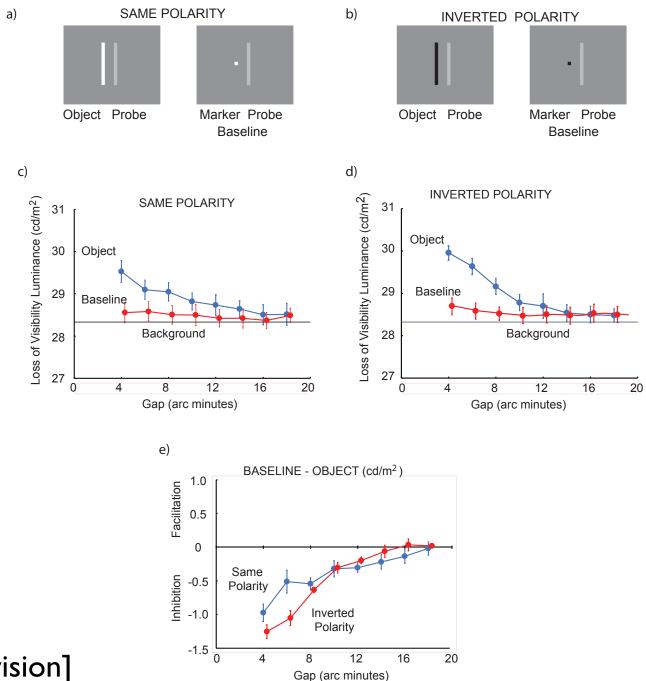
Background-Relative
Luminance Change =
$$\frac{L1 - L2}{Lm - Lb}$$

- hysteresis of motion detection as BRLC is varied
- (while response bias is minimized)

H. S. Hock, G. Schöner / Seeing and Perceiving 23 (2010) 173–195



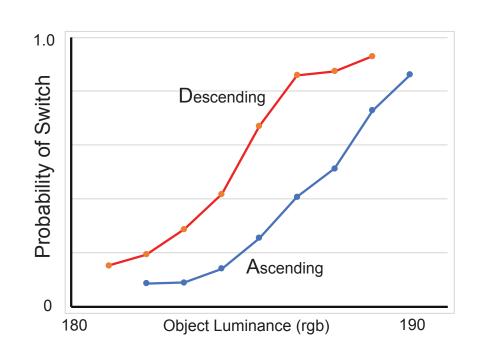
Contrast detection



[Hock, Schöner, under revision]

Hysteresis in contrast detection

- ascending trials: increase luminance in steps, ending unpredictably... report contrast or not
- descending trials: decrease luminance in steps, ending unpredictably
- report change over initial percept (modified method of limits)
- object a 4 minutes distance suppresses probe detection at lowest luminance
- also helps to localize attention!
- between presentations, the object/ probe pair jumps around on the screen unpredictably by < I deg</p>



[Hock, Schöner, under revision]

Conclusion

- even the simplest of decisions=detection in the simplest settings (contrast) is state dependent...
- consistent with the notion of a detection instability at the basis of perception