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Recall from last lecture … 

Attractor states in neural dynamic fields and 
their instabilities

self-stabilized peaks vs. sub-threshold activation patterns

detection and reverse detection instability

selection 

working memory 

boos-driven detection… 



Detection instability

just responding to input is a “decision” in which the “off” state 
becomes unstable and the system goes to the alternate “on” 
state

that detection decision is self-stabilized… bistable regime.. 

critical for the emergence of “events” at discrete times
184 H. S. Hock, G. Schöner / Seeing and Perceiving 23 (2010) 173–195

Figure 5. Hysteresis effect observed by gradually increasing or gradually decreasing the background
relative luminance contrast (BRLC) for a participant in Hock et al.’s (1997) third experiment. The
proportion of trials with switches from the perception of motion to the perception of nonmotion, and
vice versa, are graphed as a function of the BRLC value at which each ascending or descending
sequence of BRLC values ends. (Note the inversion of the axis on the right.)

which there were switches during trials with a particular end-point BRLC value
was different, depending on whether that aspect ratio was preceded by an ascend-
ing (vertical axis on the left side of the graph) or a descending sequence of BRLC
values (the inverted vertical axis on the right side of the graph). For example, when
the end-point BRLC value was 0.5, motion continued to be perceived without a
switch to non-motion for 90% of the descending trials, and non-motion continued
to be perceived without a switch to motion for 58% of the ascending trials. Percep-
tion therefore was bistable for this BRLC value and other BRLC values near it; both
motion and non-motion could be perceived for the same stimulus, the proportion of
each depending on the direction of parameter change. It was thus confirmed that
the hysteresis effect obtained for single-element apparent motion was indicative of
perceptual hysteresis, and was not an artifact of ‘inferences from trial duration’.

7. Near-Threshold Neural Dynamics

The perceptual hysteresis effect described above indicates that there are two stable
activation states possible for the motion detectors stimulated by generalized ap-
parent motion stimuli, one suprathreshold (motion is perceived) and the other sub-
threshold (motion is not perceived). Because of this stabilization of near-threshold
activation, motion and non-motion percepts both can occur for the same stimu-
lus (bistability), and both can resist random fluctuations and stimulus changes that
would result in frequent switches between them.

7.1. Why Stabilization Is Necessary

Whether an individual detector is activated by a stimulus or not, a random per-
turbation will with equal probability increase or decrease its activation. Assume it

evidence for the detection 
instability from perceptual 
hysteresis
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stabilizing selection decisions



behavioral signatures 
of selection decisions

in most experimental situations, the correct selection 
decision is cued by an imperative signal leaving no actual 
freedom of choice to the participant (only the 
freedom of error)

when performance approaches chance level, this 
approximates free choice

reasons are experimental (uncertainty, strategies… )

(task set plays a major role … to be discussed later)



choice without imperative signal

selecting a new saccadic location

Analysis of the eye movement trace may allow us to understand why
changes are so hard to detect and what is the origin of the difference between
the Central and Marginal Interest cases.

Eye Movement Measures

Figure 2 shows a typical eye movement scanning pattern for a picture. It is seen
that even though the observer was looking at the picture for 48 sec, and search-
ing actively for possible changes that might occur anywhere in the picture, the
eye continued to follow a surprisingly stereotyped, repetitive, scanpath in
which large areas of the picture are never directly fixated. Similar observations
were made by Yarbus (1967) and other authors, who observed that many por-
tions of a picture are never directly fixated, and that the particular scanpath that
is used depends on what the observer is looking for in the picture.

Could this be the reason why some changes are not noticed? Could it be that
those cases when the change is missed correspond to cases where the scanpath
happens not to include the change location? This hypothesis might explain the
difference between the MI and CI changes: Thus, it might be that MI locations,
being less “interesting” to observers, tend to be less likely to be included in the
scanpath than CI locations.

198 O’REGAN ET AL.

FIG. 2. Typical scanpath while a subject searched for changes. The original picture was in colour. The
change that occurred in this picture was a vertical displacement of the railing in the background to the
level of the man’ s eyes. In this record, the change was detected at the moment that the observer blinked
for the fourth time. The positions of the eye when the blinks occurred are shown as white circles. The
last, “effective” blink, marked “E”, occurred when the eye was in the region of the bar.

[O’Reagan et al., 2000]
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saccadic selection

in reduced visual environment, selections 
become relatively reproducible… 

selection decisions depend on metrics of visual 
stimuli 

averaging vs. selection 



saccadic 
selection

time course of 
saccadic selection:

transition from 
averaging to 
selection 

[Ottes, Van Gisbergen, Eggermont, 1985]
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saccadic selection

understanding the time course of selection 
requires a re-examination of the theory



… so far we assumed

that a single population of activation variable 
mediates both the excitatory and the inhibitory 
coupling required to make peaks attractors 

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
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But: Dale’s law
says: every neuron forms with its axon only one 
type of synapse on the neurons it projects onto

and that is either excitatory or inhibitory 

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

σ(u)

u

this is not 
actually possible!



2 layer neural fields

inhibitory coupling is 
mediated by inhibitory 
interneurons that 

are excited by the excitatory layer

and in turn inhibit the inhibitory 
layer 

 Dynamic Field Theory and Its Links to Neurophyisology 83

excitatory ones have started firing. The delayed 
onset of inhibition means that an external stimu-
lus may produce an initial overshoot of excitation, 
which then decreases as it is balanced by rising inhi-
bition. This gives rise to a phasic-tonic response 
behavior in the excitatory neurons (although it is 
not the only cause of this pattern).

In the DF model, this connectivity and the 
resulting effects on the activation time course 
can be replicated by introducing separate layers 
for the excitatory and inhibitory subpopulations 
(Figure  3.13; see Box 3.5 for the formal descrip-
tion). The basic structure for the two-layer field is 
as follows:  The two layers, excitatory and inhibi-
tory, are defined over the same feature space and are 
both governed by differential equations similar to 
those used in one-layer DFs. In the version consid-
ered here, only the excitatory layer receives direct 
external input. Excitatory interactions are imple-
mented through connections of the excitatory layer 
onto itself, described by an interaction kernel (e.g., 
a Gaussian function). In addition, the excitatory 
layer also projects to and excites the inhibitory 
layer. These projections are topological; that is, a 
projection from any point along the feature space 
on the excitatory layer acts most strongly onto the 
same point in feature space on the inhibitory layer. 
The inhibitory layer, in turn, projects back to the 
excitatory layer in an inhibitory fashion (that is, it 
creates a negative input in that layer’s field equa-
tion). Within the inhibitory layer, there are typi-
cally no lateral interactions.

The projections between the two layers can be 
described by interaction kernels, just like the lateral 

interactions. Note that the effective spread of inhi-
bition is determined by properties of both the pro-
jection from the excitatory to the inhibitory layer 
and of the reverse projection. Let us assume, for 
instance, that all three projections in the two-layer 
field (from excitatory to excitatory, excitatory 
to inhibitory, and inhibitory to excitatory) are 
described by Gaussian kernels of the same width. 
Then the effective range of inhibition in the excit-
atory layer will be wider than the range of lateral 
excitation, because the inhibition is spread by two 
kernels instead of just one. In practice, the two-layer 
field is sometimes set up in such a way that the pro-
jection from the excitatory to the inhibitory field is 
purely local (point-to-point, without an interaction 
kernel). The kernel for the reverse projection is then 
made wider to produce the overall pattern of local 
excitation and surround inhibition. This is a simpli-
fication done to reduce the computational load and 
the number of parameters. It is not meant to ref lect 
any neurophysiological property of the inhibitory 
neurons or the neural connectivity pattern.

The two-layer field shows a delayed onset 
of inhibition according to the same mechanism 
described earlier for the biological neural system. 
In particular, if an external input is applied to the 
system, it drives the activation in the excitatory 
layer, while the inhibitory layer initially remains 
unchanged. When the activation of the excitatory 
layer reaches the threshold of the output function, 
the interactions start to come into effect. The lat-
eral interactions within the excitatory layer drive 
activation further up locally, and at the same time 
the activation of the inhibitory layer is increased. 
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FIGURE  3.13: Architecture of two-layer field. The excitatory layer (top) projects onto itself and onto the inhibitory 
layer (bottom; green arrows). The inhibitory layer projects back onto the excitatory layer (red arrow). All projections are 
spread out and smoothed by Gaussian interaction kernels.
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2 layer Amari fields

BOX 3.5  TWO-LAYER DYNAMIC FIELD

A two-layer field consists of an excitatory and an inhibitory activation distribution over the 
same feature space x, each governed by a differential equation. We designate the activation 
variable for the excitatory layer with the letter u, the one for the inhibitory with v. The basic 
structure for the two-layer field contains three projections: an excitatory projection from layer 
u to itself, a second excitatory projection from layer u  to layer v, and an inhibitory projection 
back from layer u to layer u. Each of them is specified by an interaction kernel k that describes 
the connection weight as a function of distance in feature space. The three kernel functions are 
kuu, kvu, and kuv. Here, the first letter in the index always designates the target of the projection; 
the second, its origin. The field equations are then:

τu u uu uvu x t u x t h s x t k x x g u x t dx k x! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) − −′ ′ ′∫ ∫ ′′ ′ ′( ) ( )( )x g v x t dx,

τv v vuv x t v x t h k x x g u x t dx! , , ,( ) = − ( ) + + −( ) ( )( )′ ′ ′∫
The output function g is again a sigmoid (logistic) function as in the one-layer system. The 

interaction kernels are typically Gaussian functions of the form:
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x x
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The parameter cuu specifies the strength of the projection, the parameter σuu the width of 
the Gaussian kernel. The inhibitory kernel may include an additional constant term to produce 
global inhibition.

In this formulation, the effective width of inhibition is determined by both the kernels kuv 
and kvu. It is sometimes desirable to simplify this by omitting one of the kernels and using a 
simpler point-to-point connection for the projection from the layer u to layer v. This yields the 
dynamical system

τu u uu uvu x t u x t h s x t k x x g u x t dx k x! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) − −′ ′ ′∫ ∫ ′′ ′ ′( ) ( )( )x g v x t dx,

τv v vuv x t v x t h c g u x t! , , ,( ) = − ( ) + + ( )( )

If only global inhibition is required in a model, this architecture can be further simplified by 
replacing the continuous inhibitory layer by a single inhibitory node. This node receives input 
from the whole excitatory layer and projects homogeneous inhibition back to it:

τu u uu uvu x t u x t h s x t k x x g u x t dx c g v t! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) −′ ′ ′∫ (( )( )

τv v vuv t v t h c g u x t! ( ) = − ( ) + + ( )( )∫ ,

Note that this formulation with a single inhibitory node shows a somewhat different behav-
ior than the form with a continuous layer and purely global inhibition: In a continuous layer, 
the total output can increase very gradually as an activation peak becomes wider. When only 
a single node is used, the total output is always the sigmoid of the single activation variable. 
It can be useful to choose a sigmoid function with a very shallow slope here to allow a more 
gradual increase of the inhibition.
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with projection kernels



simulation



Implications

the fact that inhibition 
arises only after excitation 
has been induced has 
observable consequences in 
the time course of decision 
making: 

initially input-dominated

early excitatory interaction 

late inhibitory interaction

_ +

+

excitatory
layer

inhibitory
layer

inhibitory
kernel

excitatory
kernel

[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



time course of selection 

early: input driven

intermediate: dominated by excitatory interaction

late: inhibitory interaction drives 
selection

[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



=> early fusion, late selection
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fixation and selection
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2 layer fields afford oscillations

=> simulation

(oscillatory states for enhanced coupling 
among fields)

(generic nature of oscillations)



studying selection decisions in the 
laboratory

using an imperative signal... 



reaction time (RT) paradigm

time

imperative 
signal=
go signal

response

RT

task set



the task set
is the critical factor in such studies of selection: 
which perceptual/action alternative/choices are 
available… 

e.g., how many choices 

e.g., how likely is each choice

e.g., how “easy” are the choices to recognize/perform 

because the task set is known to the participant 
prior to the presentation of the imperative signal, 
one may think of the task set as a “preshaping” of 
the underlying representation (pre=before the 
decision)
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weak preshape 
in selection

specific (imperative) 
input dominates and 
drives detection 
instability

[Wilimzig, Schöner, 2006]

0

500

1000

1500

0

parameter, x

tim
e, 

t

ac
tiv

at
io

n 
u(

x)

specific input + boost
in different conditions

preshape

0

2

4

parameter, x

S(
x)

  -20

  -10

0

10

u(
x)

parameter, x

boost



using preshape to account for 
classical RT data 

Hick’s law: RT increases 
with the number of 
choices
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metric effect

predict faster response 
times for metrically close 
than for metrically far 
choices
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experiment:  
metric effect

[McDowell, Jeka, Schöner ]
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detection-selection: overcoming fixation

detection can be like selection: initiating an action 
means terminating the non-action=fixation or posture 

example: saccade initiation 
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C. Wilimzig et al. / Neural Networks 19 (2006) 1059–1074 1061

Fig. 1. Psychophysical set-up for double-target stimuli in direction (a) or
eccentricity paradigms (b). In direction paradigms, the visual targets (black
dots) lie on an imaginary line (vertical here), that is offset against the initial
fixation point (cross). The whole arrangement may also be rotated by ±90⇥. We
denote the dimension separating different visual targets by x , and the dimension
separating the fixation position from the line of visual targets by y (see dashed
lines). In the eccentricity paradigm, fixation signal and visual targets all lie on
the same imaginary line (horizontal here). We denote the associated dimension
by x .

2. Model

Information about upcoming movements is represented by
distributions of population activation in cortical structures
such as the frontal eye fields and subcortical structures such
as the superior colliculus. When distributions of population
activation are characterized by a strong overlap between
information coded by neighboring neurons with similar tuning
curves information processing in such neural networks can
be described by continuous neural fields. This approximation
was first proposed based on the anatomy of cortical areas
by Amari (1972, 1977) and Wilson and Cowan (1973). The
link to population coding has been established more recently
(Bastian, Schöner, & Riehle, 2003; Erlhagen, Bastian, Jancke,
Riehle, & Schöner, 1999; Jancke et al., 1999). We follow the
mathematical formalization by Amari and Arbib (1977) and the
conceptual framework of Dynamic Field Theory by Erlhagen
and Schöner (2002), Kopecz and Schöner (1995) and Schöner
et al. (1997), which we briefly review now by describing how
the model of the selection system is constructed.

The first step is to define the metric dimensions that span
the space of possible eye movements. These are clearly the two
dimensions of visual space in retinal coordinates, representing
possible saccadic end-points. To simplify the modelling,

Fig. 2. The Dynamic Field Model of saccadic decision making consists of an
initiation level and a selection level. During the fixation period, a single peak
of activation in the initiation level at the foveal position reflects the active state
of fixation. (a) In the absence of a visual target, activation is negative at the
selection level, and the fixation peak remains stable. (b) At target onset, input
to the selection level generates a self-stabilized activation peak there, which
provides extra-foveal input to the initiation level, and competes with the fixation
peak and ultimately wins, inducing a movement-related peak in that level.

we exploit that typical paradigms probing saccadic decision
making sample this space in specific ways. Fig. 1 illustrates the
direction (top) and eccentricity (bottom) paradigms. In the first,
the initial fixation lies off an imaginary line, along which two
targets are presented. For selection, it is sufficient in this case
to model representations along the dimension, x , separating
different possible targets (vertical in the figure). For initiation,
it is sufficient to model representations that separate initial
fixation from the shared component of the two visual targets
along a perpendicular dimension, y (horizontal in the figure).
In eccentricity paradigms, initial fixation position and visual
targets are all lined up, so the same linear dimension, x , can be
used for both initiation and selection processes. To generalize
this account to two dimensions of selection and initiation
does not require any new mathematics, but is numerically
considerably more costly (Erlhagen & Schöner, 2002; Wilimzig
& Schöner, 2005).

An activation variable u(x) is assigned to each site along
this dimension. The level of activation u(x) represents the
degree to which this particular value is currently specified.
High levels of activation drive neuronal processes down-stream
from the activation field, low levels of activation do not.
When, for instance, no saccadic end-point is specified in the
absence of sensory information, the field is flat at negative
levels u(x) = constant < 0 (Fig. 2(a)). A localized peak of

Aut
ho

r's
   p

er
so

na
l   

co
py

C. Wilimzig et al. / Neural Networks 19 (2006) 1059–1074 1063

Fig. 4. Time course of activation in the initiation level. Positive activation is
depicted in grey scales as a function of retinal position and time. At time = 0
the target is switched on and the fixation input is switched off. Movement
initiation according to our criteria occurs at the time marked by the dashed
line.

⌅v,iniv̇ini(t) = �vini(t) +
⇥

wini fu[uini(y⇥, t)]dy⇥ + hv,ini. (6)

This field receives only foveal input, Sfix(y, t), while visual
structure at other locations does not directly generate input.
Instead, extra-foveal input is provided from the selection field.
In the presence of a fixation signal, there is typically a self-
stabilized peak at the origin representing a fixation state (both
panels of Fig. 2). When the selection field provides extra-foveal
input, competition between activation at the fovea and at the
specified location leads to the suppression of the fixation peak
and the generation of a peak at the specified saccadic end-
point (see Fig. 4). If we map positive levels of activation onto
elevated firing rates and negative levels of activation onto lower
than spontaneous firing rates, then this mechanism in the model
matches neurophysiological results, which show that saccade
initiation correlates with an increased discharge rate in saccade-
related neurons and at the same time with a decreased discharge
rate in fixation neurons (Dorris and Munoz (1998) and Dorris,
Pare, and Munoz (1997), see review by Schall (2004a)).

Stochastic variability is represented in the model through
fluctuations of the level of activation. These are caused by
stochastic inputs, modelled in the simplest form as independent
gaussian white noise at each field site (with zero mean
�⇥(x, t) = 0 and variance, q: �⇥(x, t)⇥(x ⇥, t ⇥) = q�(t �
t ⇥)�(x � x ⇥). These approximate the influence of other
neuronal processes, unrelated to the task as well as intrinsic
neuronal variability. Spatially uncorrelated noise is the weakest
possible stochastic perturbation. To model variance in the
countermanding paradigm we introduce variability from trial-
to-trial in the strength of fixation inputs, which models random
variations of unspecific factors such as attention or pretrial
effects.

Finally, we need to specify how activation patterns in the
model drive saccadic eye movements. In earlier work, we
showed how a self-stabilized peak of saccade-related activation

may set a new stable state for the motor control system of the
eyes (Kopecz & Schöner, 1995). Although the details were not
realistic, the conceptual issue was that the transition from a
peak-less state to a state with a self-stabilized peak may induce
a related transition in the motor control system from a fixation
state to a movement state. In reality, the motor control system
has considerably more complex structure, including horizontal
and vertical burst generators which are transiently activated
(review, Lefèvre, Quaia, and Optican (1998), Robinson (1986)).
Here we seek a way to simplify the problem by replacing the
entire motor control system with a simple rule that determines
the time of initiation of a saccade as well as its metrics. Saccade
latency was determined as the time interval from stimulus
presentation to the moment in time when the activation within
the fixation peak

F(t) =
⇥ ⇤fix

�⇤fix

fu[uini(y⇥, t)]dy⇥ (7)

fell below a criterion level Fthresh. To this time we added 70 ms
to account for an estimated 40 ms afferent and 30 ms efferent
delay (e.g. Smit and van Gisbergen (1989)). The metrics of
the saccades were characterized by the center of gravity of the
activation distribution in the selection field:

xc =
⇥

R⇥
x ⇥ fu[u(x ⇥)]dx ⇥

� ⇥

R⇥
fu[u(x ⇥)]dx ⇥. (8)

Thus, the read out of saccadic end-point is done within the
selection level while the fixation level solves the release of the
fixation activity and the building of a new activation peak at
the location of the target within the coordinates of the fixation
level. To decide whether movement cancellation was successful
in countermanding trials we observed whether a peak was
generated at the target site of the field by looking for positive
activation there.

3. Results

3.1. Overcoming fixation and countermanding

In the model, a saccade is initiated when extra-foveal
activation in the initiation level induced by input from the
selection level inhibits the fixation peak. How much time this
takes depends on the amount of foveal fixation activation, which
in turn, depends on the fixation stimulus. This can be illustrated
by simulating the gap-step-overlap paradigm (Fig. 5), in which
the fixation signal is extinguished either before (gap), at the
same time (step), or after (overlap) the visual target appears.
The mean latency of saccade initiation increases from gap
to step to overlap conditions, matching the experimentally
established effect (panel (b) of the figure) and reproducing
Kopecz’s (1995) earlier modelling results. While Kopecz did
not model variance, the stochastic inputs included in our model
enables us to generate histograms of latencies (panel (a) of
the figure) that can be compared to experimental assessments
of variability (Gezeck & Timmer, 1998). In the model, the
compact, sharp histograms in the gap and step condition
are in contrast with the broader, noisier histogram in the

[Wilimzig, Schneider, Schöner, 2006]



initiation vs. fixation

such models account for the gap-step-overlap effect

[Kopecz, 95]
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boost-driven detection instability

inhomogeneities in the field existing prior to a 
signal/stimulus that leads to a macroscopic 
response=“preshape”

the boost-driven detection instability amplifies 
preshape into macroscopic selection decisions



… emergence of categories?

if we understand, how such inhomogeneities 
come about, we understand the emergence of 
categories…



this supports 
categorical 
behavior

when preshape 
dominates

[Wilimzig, Schöner, 2006]



categorical responding

based on categorical 
memory trace and 
boost-driven detection 
instability 



distance effect

common in categorical tasks… e.g., decide which of 
two sticks is longer => RT is larger when sticks are 
more similar in length (1930s’)



interaction metrics-probability 

Wilimzig, Schöner, 2006

opposite to that 
predicted for 
input-driven 
detection 
instabilities: 

metrically close 
choices show 
larger effect of 
probability
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Time course of selection decisions: 
Behavioral evidence for the graded and 

continuous evolution of decision

time
move on 4th to tone

imperative stimulus

imposed SR interval

timed movement 
initiation paradigm

[Ghez and colleagues, 1988 to 1990’s]



[Favilla et al. 1989]



[Favilla et al. 1989]
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[Erlhagen, Schöner. 2002, Psychological Review 109, 545–572 (2002)] 
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place with minimal changes in the hand paths. Table 1
shows the means and standard errors of curvature and
linearity indices (see Materials and methods) across sub-
jects (n = 5) for predictable targets and for each time in-
terval for unpredictable targets. Small increases in curva-
ture of 1°–2° and reductions in linearity occur among
movements initiated between 80 and 200 ms after target
presentation. However, all values are well within the
range of normal values for linearity in reaching move-
ments (e.g. Atkeson and Hollerbach 1985; Georgopoulos
1988a, b; Georgopoulos and Massey 1988; Gordon et al.
1994b). Moreover, as can be noted among the hand paths
illustrated in Fig. 5, change in direction associated with
curvature did not appreciably reduce the directional error
at the end point. Similarly, the improvement in accuracy
was not achieved through variations in movement time.

Those data will, however, be considered in greater detail
below when the systematic effects of target separation on
movement time are described (see Fig. 10).

Threshold target separation
for discrete directional specification

Figure 7 shows the distributions of initial movement di-
rections in one subject at five target separations and
smoothed for clarity. Data from the same three succes-
sive S-R time interval bins used in earlier figures are
shown in different line types. For the 30° degree target
separation, at S-R intervals ≤ 80 ms (dotted line and his-
togram to show effect of smoothing) initial directions are
distributed unimodally around the midpoint of the range

224

Fig. 7 Experiment 2. Distribu-
tions of movement directions at
the time of peak acceleration in
one subject for five target sepa-
rations. In each plot, distribu-
tions were fitted with a smooth
line using a cosine function
(Chambers et al. 1983). The ar-
rows on the x-axis point to the
required direction for each tar-
get separation. In the top plot,
the actual histogram for re-
sponses with S-R intervals
≤ 80 ms is displayed to demon-
strate the relationship of the fit-
ted line to the actual distribu-
tion. On the right side of each
plot, the actual target locations
are displayed for reference &/fig.c:

[Ghez et al 1997]

infer width of 
preshape peaks 
in field
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Conclusion

DFT concept of selection decisions supported 
by ample behavioral signatures

multiple contributions to specification 

task set/preshape

imperative signal /go signal 

metrics of task layout matters

time course of decision making can be 
understood … 


