Dynamic Field Theory: Selection decisions

Gregor Schöner gregor.schoener@ini.rub.de

Recall from last lecture ...

- Attractor states in neural dynamic fields and their instabilities
 - self-stabilized peaks vs. sub-threshold activation patterns
 - detection and reverse detection instability
 - selection
 - working memory
 - boos-driven detection...

Detection instability

- just responding to input is a "decision" in which the "off" state becomes unstable and the system goes to the alternate "on" state
- that detection decision is self-stabilized... bistable regime..
- critical for the emergence of "events" at discrete times

evidence for the detection instability from perceptual hysteresis

H. S. Hock, G. Schöner / Seeing and Perceiving 23 (2010) 173-195

selection instability

stabilizing selection decisions

behavioral signatures of selection decisions

in most experimental situations, the correct selection decision is cued by an *imperative signal* leaving no actual freedom of choice to the participant (only the freedom of *error*)

when performance approaches chance level, this approximates free choice

reasons are experimental (uncertainty, strategies...)

(task set plays a major role ... to be discussed later)

choice without imperative signal

selecting a new saccadic location

[O'Reagan et al., 2000]

[after: Ottes et al., Vis. Res. 25:825 (85)]

[after Kopecz, Schöner: Biol Cybern 73:49 (95)]

in reduced visual environment, selections become relatively reproducible...

selection decisions depend on metrics of visual stimuli

averaging vs. selection

time course of saccadic selection:

transition from averaging to selection

[Ottes, Van Gisbergen, Eggermont, 1985]

understanding the time course of selection requires a re-examination of the theory

... so far we assumed

that a single population of activation variable mediates both the excitatory and the inhibitory coupling required to make peaks attractors

But: Dale's law

says: every neuron forms with its axon only one type of synapse on the neurons it projects onto

and that is either excitatory or inhibitory

2 layer neural fields

- inhibitory coupling is mediated by inhibitory interneurons that
 - are excited by the excitatory layer
 - and in turn inhibit the inhibitory layer

[chapter 3 of the book]

2 layer Amari fields

 σ

 σ

with projection kernels

$$k_{uu}(x-x') = c_{uu} \cdot \exp\left(-\frac{(x-x')^2}{2\sigma_{uu}^2}\right)$$

и

simulation

Implications

the fact that inhibition arises only after excitation has been induced has observable consequences in excitatory the time course of decision layer making:

initially input-dominated

early excitatory interaction

late inhibitory interaction

[figure:Wilimzig, Schneider, Schöner, Neural Networks, 2006]

time course of selection

intermediate: dominated by excitatory interaction

[figure:Wilimzig, Schneider, Schöner, Neural Networks, 2006]

=> early fusion, late selection

[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]

fixation and selection

[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]

2 layer fields afford oscillations

=> simulation

(oscillatory states for enhanced coupling among fields)

(generic nature of oscillations)

studying selection decisions in the laboratory

using an imperative signal...

reaction time (RT) paradigm

the task set

- is the critical factor in such studies of selection: which perceptual/action alternative/choices are available...
 - e.g., how many choices
 - e.g., how likely is each choice
 - e.g., how "easy" are the choices to recognize/perform
- because the task set is known to the participant prior to the presentation of the imperative signal, one may think of the task set as a "preshaping" of the underlying representation (pre=before the decision)

notion of preshape

movement parameter

weak preshape in selection

specific (imperative) input dominates and drives detection instability

[Wilimzig, Schöner, 2006]

using preshape to account for classical RT data

[Erlhagen, Schöner, Psych Rev 2002]

metric effect

[from Schöner, Kopecz, Erlhagen, 1997]

predict faster response times for metrically close than for metrically far choices

experiment: metric effect

[McDowell, Jeka, Schöner]

[from Erlhagen, Schöner: Psych. Rev. 2002]

[from McDowell, Jeka, Schöner, Hatfield, 2002]

detection-selection: overcoming fixation

detection can be like selection: initiating an action means terminating the non-action=fixation or posture

example: saccade initiation

[Wilimzig, Schneider, Schöner, 2006]

initiation vs. fixation

such models account for the gap-step-overlap effect

boost-induced detection instability

boost-driven detection instability

- inhomogeneities in the field existing prior to a signal/stimulus that leads to a macroscopic response="preshape"
- the boost-driven detection instability amplifies preshape into macroscopic selection decisions

... emergence of categories?

if we understand, how such inhomogeneities come about, we understand the emergence of categories...

this supports categorical behavior

when preshape dominates

[Wilimzig, Schöner, 2006]

categorical responding

distance effect

common in categorical tasks... e.g., decide which of two sticks is longer => RT is larger when sticks are more similar in length (1930s')

interaction metrics-probability

opposite to that predicted for input-driven detection instabilities:

metrically close choices show larger effect of probability

Wilimzig, Schöner, 2006

Time course of selection decisions: Behavioral evidence for the graded and continuous evolution of decision

> timed movement initiation paradigm

[Ghez and colleagues, 1988 to 1990's]

[Favilla et al. 1989]

[Favilla et al. 1989]

theoretical account for Henig et al.

Experimental results of Henig et al

[Erlhagen, Schöner. 2002, Psychological Review 109, 545–572 (2002)]

infer width of preshape peaks in field

[Ghez et al 1997]

short SR interval: observe preshape

long SR interval: observe stimulus-defined movement plan

Conclusion

DFT concept of selection decisions supported by ample behavioral signatures

multiple contributions to specification

task set/preshape

imperative signal /go signal

metrics of task layout matters

time course of decision making can be understood ...