Memory in DFT

Gregor Schöner INI RUB

What is memory?

The influence of past experience on present perception, action, or thought

Time scale and types of memory

working memory

short term memory

long term memory

semantic memory/skill learning

Working memory

- perceptual, mental, or motor states that are immediately available to ongoing neural processes...
- arise on the time scale of perceiving, thinking, and acting...
- have strong capacity limits... 4 to 7 "items"
- are part of processing

Working memory

standard neural interpretation: activation induced by stimulation (a detection decision) is sustained once that input is removed

Sustained activation

monkey in a delayed response task

neural recording from pre-frontal cortex

[Fuster 1971]

Working memory

- a huge behavioral and neural literature
- with ongoing debates: resource allocation, re-activation of working memory etc

DFT: Working memory emerges from the memory instability

Time scale and types of memory

- short term memory
- Iong term memory
- semantic memory/skill learning

STM/LTM

defined by the need/capacity to "recall" the memory...

📕 cued recall

📕 free recall

it's neural foundation is still actively researched

📕 Hippocampus plays a role

DFT: the memory trace

postulate that peaks of activation lay down a memory trace

that conversely preactivates the field

Mathematics of the memory trace

$$\tau \dot{u}(x,t) = -u(x,t) + h + S(x,t) + u_{mem}(x,t) + \int dx' w(x-x') \sigma(u(x'))$$

$$\tau_{\text{mem}} \dot{u}_{\text{mem}}(x,t) = -u_{\text{mem}}(x,t) + \int dx' w_{\text{mem}}(x-x')\sigma(u(x',t))$$

memory trace only evolves while activation is excited

potentially different growth and decay rates

The memory trace reflects the history of decisions

The memory trace suffers from interference

Cued recall: boost + localized input

position

Stable memory in DFT: Hebbian learning

$$\tau \dot{W}(x, y, t) = \epsilon(t) \Big(-W(x, y, t) + f(u_1(x, t)) \times f(u_2(y, t)) \Big)$$

[Sandamirskaya, Frontiers Neurosci 2014]

Hebbian learning

learning reciprocal connections between zerodimensional nodes and fields

analogous to the output layer of DNN

=> ensembles of such nodes coupled inhibitorily form the basis for conceptual thinking...

Cued recall

- with ridge/slice input in joint representations of different feature dimensions
- => module on higher-dimensional fields and binding

Memory trace ~ first-order Hebbian learning

- increases local resting level at activated locations
- the bias input in NN
- boost-driven detection instability amplifies small bias => important role in DFT

