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Functional analysis of the brain: how?
vary conditions “outside” the brain: stimulus, motor 
task, cognitive task and relate to neural activity: coding/
decoding, cognitive neuroscienceNeuronal Dynamics – 1.1. Neurons and Synapses/Overview 
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or the reverse: vary 
neural substrate 
(lesioning, 
optogenetics, etc) 
and observe what 
happens to behavior/
competence: 
neuropsychology



Coding/decoding at neural level

Tuning curves: neural activity 
(e.g. .spike rate) as a function of 
stimulus/task parameter

62 Fou n dat ions  of Dy na m ic  Fi e l d T h eory

interactions effects. In Chapter  2, we described 
how such interactions bring about the activation 
dynamics in DFs that form peaks and create deci-
sions. Here we will show that lateral interactions 
in DFs are consistent with empirical data and can 
account for the observed activation patterns in 
the visual cortex. In this context, we will present 
an extension of the basic DF model, the two-layer 
field. The two-layer field ref lects more closely the 
biological connectivity within neural populations 
and is particularly aimed at capturing the tempo-
ral details of population dynamics. With this tool, 
we can also demonstrate how to fit activation pat-
terns for the preparation of reach movements in the 
motor cortex with a DF model.

The analysis method of DPA plays a key role in 
all of this by bringing empirically measured popu-
lation responses into the same format used in DF 
models. This makes it possible to directly compare 
activation patterns in DF models with neural data. 
In particular, this method allows us to make test-
able predictions from DF models about activation 
patterns in biological neural populations. The DPA 
method thereby provides the neural grounding for 
the dynamic field theory (DFT), establishing a 
direct link between the level of neural activity and 
DF models of behavior and cognition.

L I N K I NG  N E U R A L  AC T I VAT ION 
T O   P E RC E P T ION,  C O G N I T ION, 
A N D  BE H AV IOR
This section concerns the link between neuro-
physiology and things that actually matter to liv-
ing, behaving biological agents like you and me. Is 
this apple green or red? Where do I  have to move 
my hand to grab it? Some aspect of neural activation 
must ref lect the state of affairs on this macroscopic 
level—the level of perceptual decisions, cogni-
tive states, and overt behavior. As presented in the 
introduction, we believe that this role is played by 
patterns of activation in neural populations. To sub-
stantiate this claim, we need to take a brief detour to 
the realm of single neurons, and then work our way 
up to population-based representations.

To determine the link between the activity of 
a single neuron and external conditions, neuro-
physiologists record the spiking of the neuron via 
a microelectrode placed near (or within) the cell 
while varying sensory or motor conditions in a 
systematic fashion. This could mean, for instance, 
varying the color or position of a visual stimulus or, 
in the motor case, varying the direction of a limb 

movement that an animal has to perform. Not all 
neurons are sensitive to all parameters, so the first 
step is to determine which parameters cause the 
neuron to change its activity level. When we find a 
parameter that reliably affects the spike rate of the 
recorded neuron, we can proceed to assessing the 
exact nature of the relationship. In order to do this, 
the parameter value is varied along the underlying 
dimension and the spike rate for each sample value 
is recorded. The results of this procedure can be 
visualized by plotting spike rate against the param-
eter dimension. An idealized function may be fitted 
to the data points, interpolating spike rate between 
sample values. The resulting curve is called the tun-
ing curve of the neuron.

This technique has revealed that, throughout 
the brain, many neurons share a roughly similar 
type of mapping between parameter dimension and 
spike rate, which is characterized by Gaussian-like 
tuning curves (Figure 3.1). That is, they fire most 
vigorously for a specific “preferred” parameter 
value, while spike rate declines with rising distance 
from that value, reaching the neuron’s activity base-
line for very distant values.

A classic example for these characteristics 
can be found in the visual cortex, where many 
cells respond strongly to bars of light of a par-
ticular orientation and reduce their firing as the 
angle of orientation deviates from that preferred 
value (Hubel & Wiesel, 1959, 1968). Visual cells 
show tuning along other feature dimensions as 
well, such as color (Conway & Tsao, 2009), shape 
(Pasupathy & Connor, 2001)  or the direction of 
motion (Britten & Newsome, 1998). Neurons in 
nonvisual areas exhibit similar properties, such 
as cells in auditory cortex that are tuned to pitch 
(Bendor & Wang, 2005), or cells in somatosensory 
cortex that are tuned to the orientation of tactile 
objects (Fitzgerald, 2006).The most common 
scheme, however, is tuning to locations in physical 
space. In sensory areas, most cells are tuned to the 
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FIGURE  3.1: Schematic illustration of an idealized 
tuning curve.
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Example tuning curve in primary 
visual cortex (monkey)

[Hubel, Wiesel, 1962]



Example: tuning curve in primary 
motor cortex (monkey) 

[Georgopoulos, Schwartz, Kalaska, 1986]



Neural maps
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Aniruddha Das, Chapter 21 
of Kandel et al 2021]

tuning curves studied 
systematically across 
the cortical surface  

=> feature maps

topography 



Population code

notion that all activated neurons contribute to feature 
representation according to their tuning curves

Chapter 21 / The Constructive Nature of Visual Processing  517

Visual Information Is Represented by a Variety 
of Neural Codes

Individual neurons in a sensory pathway respond to 
a range of stimulus values. For example, a neuron in a 
color-detection pathway is not limited to responding 
to one wavelength but is instead tuned to a range of 
wavelengths. A neuron’s response peaks at a particular 
value and tails off on either side of that value, forming a 
bell-shaped tuning curve with a particular bandwidth. 
Thus, a neuron with a peak response at 650 nm and a 
bandwidth of 100 nm might give identical responses at 
600 nm and 700 nm.

To be able to determine the wavelength from neu-
ronal signals, one needs at least two neurons repre-
senting filters centered at different wavelengths. Each 
neuron can be thought of as a labeled line in which 
activity signals a stimulus with a given value. When 
more than one such neuron fires, the convergent sig-
nals at the postsynaptic relay represent a stimulus with 
a wavelength that is the weighted average of the val-
ues represented by all the inputs.

A single visual percept is the product of the 
activity of a number of neurons operating in a spe-
cific combinatorial and interactive fashion called a 
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Figure 21–17 Vector averaging is one model for popula-
tion coding in neural circuits.  Vector averages describe the 
possible relationship between the responses in an ensemble 
of neurons, the tuning characteristics of individual neurons in 
the ensemble, and the resultant percept. Individual neurons 
respond optimally to a particular orientation of a stimulus in 
the visual field, but also respond at varying rates to a range of 
orientations. The stimulus orientation to which a neuron fires 

best can be thought of as a line label—when the cell fires 
briskly, its activity signifies the presence of a stimulus with 
that orientation. A number of neurons with different orienta-
tion preferences will respond to the same stimulus. Each neu-
ron’s response can be represented as a vector whose length 
indicates the strength of its response and whose direction 
represents its preferred orientation, or line label. (Adapted, with 
permission, from Kapadia, Westheimer, and Gilbert 2000.)

population code. Population coding has been modeled 
in various ways. The most prevalent model is called 
vector averaging.

We can illustrate population coding with a pop-
ulation of orientation-selective cells, each of which 
responds optimally to a line with a specific orientation. 
Each neuron responds not just to the preferred stimu-
lus but rather to any line that falls within a range of ori-
entations described by a Gaussian tuning curve with a 
particular bandwidth. A stimulus of a particular orien-
tation most strongly activates cells with tuning curves 
centered at that orientation; cells with tuning curves 
centered away from but overlapping that orientation 
are excited less strongly.

Each cell’s preferred orientation, the line label, 
is represented as a vector pointing in the direction of 
that orientation. Each cell’s firing is a “vote” for the 
cell’s line label, and the cell’s firing rate represents the 
weighting of the vote. The cell’s signal can thus be rep-
resented by a vector pointing in the direction of the 
cell’s preferred orientation with a length proportional 
to the strength of the cell’s response. For all the acti-
vated cells, one can calculate a vector sum with a 
direction that represents the value of the stimulus 
(Figure 21–17).

Kandel-Ch21_0496-0520.indd   517 20/01/21   2:44 PM

[Charles D. Gilbert, Aniruddha Das, Chapter 21 
of Kandel et al 2021]



Experimental evidence for 
population representations

Lee, Rohrer, Sparks: use the topographic map of 
saccadic endpoint in superior colliculus

to reversibly deactivate portions of the population: 
observe predicted deviations of saccadic endpoints

[after Lee, Rohrer, Sparks: Nature (1988) 
in Chapter 3 of the book]

 Dynamic Field Theory and Its Links to Neurophyisology 65

Following the typical scheme, the tuning of 
neurons in the superior colliculus is broad, so that 
a large number of neurons fire for each saccade. 
Given the topographical layout we can expect that 
when the metrics of a saccade are specified, the 
active neurons are clustered together in one spatial 
region of the superior colliculus. This was exactly 
what Lee and colleagues found when recording the 
activity of cells in the superior colliculi of monkeys. 
Prior to each saccade a circular blob of activation 
forms in the topographical map. Neurons located 
in the region of the map that corresponds to the 
saccade target are most strongly activated, while 
the level of activation decreases toward the blob’s 
periphery. The red circle in Figure  3.3a outlines 
the approximate extent of an activation blob that 
results in the saccade illustrated by vector A (black 
arrow on the right). B and C mark the centers of 

activation blobs that result in the saccade vectors 
labeled accordingly.

It seems intuitively clear that these local-
ized peaks indicate the metrics of saccades, but to 
test the population coding hypothesis we need to 
determine whether the actual saccade target really 
depends on all active neurons, including the weakly 
activated ones at the periphery of the blob. To 
examine this, Lee and colleagues induced saccades 
by presenting visual targets to their monkeys while 
inactivating either peripheral or central portions 
of the activation blob with a local anesthetic. They 
then assessed how this deactivation impacted the 
resulting saccades.

Figure 3.3b shows the result of deactivating the 
center of the blob (blue dot), that is, the most active 
neurons. The resulting saccade (red arrow) is iden-
tical to the one without deactivation. Apparently, 
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FIGURE 3.3: Results of experiments of Lee et al. (1988). Each subfigure shows a f lattened version of the topographical 
motor map of the left superior colliculus. Red letters mark the centers of activation blobs observed for different saccades, 
which are depicted by the correspondingly labeled vectors on the right. Red circles mark the approximate extent of acti-
vation blobs centered on the middle of the circle. Blue dots mark regions that were deactivated in the experiments. (a) 
Activation centers observed for the saccades on the right, without deactivation. (b) A visually evoked saccade to the tar-
get described by vector A is not altered by deactivating the blob center. The weighted average of B and C provides a suf-
ficient estimate of A. (c) A visually evoked saccade to the target described by vector B is altered when the peripheral blob 
region that corresponds to A is deactivated. The resulting saccade is now guided by a weighted spatial average of B and 
D. Adapted by permission from Macmillan Publishers Ltd: Nature, Lee, C., Rohrer, W. H., & Sparks, D. L., Population 
coding of saccadic eye movements by neurons in the superior colliculus, 332(6162), 357–360, copyright 1988.
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neural fields as activation patterns 
defined over feature dimensions 

rather than over the cortical 
surface as for neural maps

e.g., space, movement 
parameters, feature 
dimensions, viewing 

parameters, ...

dimension

activation
field

metric contents

information, probability, certainty

Neural grounding of DFT



the potentially high-dimensional space of visual stimulus at-
tributes. The second step consisted of projecting the neural re-
sponses to “composite” stimuli assembled from two squares of
light at varied separations (Fig. 1B) onto this subspace by ana-
lyzing DPAs weighted with the responses to composite stimuli.
Distance-dependent deviations of the DPAs from the superposi-
tion of the corresponding elementary components reveal insight
into interaction processes within the representation of retinal
location at the population level. Such interaction may arise from
recurrent connectivity within the cortical area as well as from
recurrence within the network providing the sensory input. A
neural field model explicates how such mechanisms contribute to
the evolution of cortical activation within ensembles of neurons.

MATERIALS AND METHODS
Experimental setup
Animals and preparation. Electrophysiological recordings from a total of
178 cells were made extracellularly in the foveal representation of area 17
in 20 adult cats of both sexes. Animals were initially anesthetized with
Ketanest (15 mg/kg body weight, i.m.; Parke-Davis, Courbevoie, France)
and Rompun (1 mg/kg, i.m.; Bayer, Wuppertal, Germany). Additionally,
atropin (0.1 mg/kg, s.c.; Braun) was given. After intubation with an
endotracheal tube, animals were fixated in a stereotactic frame. During
surgery and recording, anesthesia was maintained by artificial respiration
with a mixture of 75% N2O and 25% O2 and by application of sodium
pentobarbital (Nembutal, 3 mg ! kg !1 ! hr !1, i.v.; Ceva). Treatment of all
animals was within the regulations of the National Institution of Health
Guide and Care for Use of Laboratory Animals (1987). Animals were
paralyzed by continuous infusions of gallamine triethiodide (2 mg/kg, i.v.
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Figure 1. A, Schematic illustration of the elementary stimuli (squares of light, 0.4 " 0.4°) presented at seven horizontally shifted positions within the
foveal representation of the visual field. B, Composite stimuli were assembled from combinations of the elementary stimuli and were presented at six
different separation distances of 0.4–2.4°. The left stimulus component was kept at a fixed nasal position. C, I llustration of the noncentered field
approach. Stimuli, indicated by the small gray square, were presented independent of the locations of the RFs of the measured neurons (schematically
illustrated by gray ellipses). The frame with the cross-hair illustrates the analyzed portion of the visual space (2.8 " 2.0). D–F, I llustration of the Gaussian
interpolation method to construct the DPA. D1, The grid of stimuli used (36 circles, each 0.64° in diameter) to measure the RF profile of each neuron
was centered on the hand-plotted RF (response plane technique). D2, The RF profile constructed from responses to this stimulus grid was smoothed (D3)
with a Gaussian filter (width, 0.64°). The RF center was determined as the location of the centroid of this smoothed RF profile. D4, The contribution
of each cell to the population representations was always centered on this location and was weighted with the current firing rate of the neuron, illustrated
as vertical bars of varying length. This weighting factor was normalized to the maximal firing rate of each neuron. E, The DPA was obtained by Gaussian
interpolation (width, 0.6°) of the weighted firing rates and by a subsequent convolution with an unweighted Gaussian (width, 0.64°). F, View of the
distribution of population activation using gray levels to indicate activation. The location of the stimulus is indicated by the small square outlined in black
together with the stimulus frame. In a second approach, one-dimensional DPAs were derived by means of an OLE; see Materials and Methods and
Figure 2C.
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Example: primary visual 
cortex A17 in the cat

determine tuning to retinal 
location for each cell

superpose tuning curves 
weighted by current firing 
rate: distribution of population 
activation DPA representing 
retinal location

[Jancke, Erlhagen, Dinse, Akhavan, Giese, Steinhage, Schöner JNsci 19:9016 (99)]

Neural grounding of DFT: sensory 



DPA of stimuli presented to 
all neurons 

Ûij
sup!sk , t" ! Ûi !sk , t" " Ûj !sk , t" (7)

of the time-resolved DPAs for two elementary stimuli si and sj with the
time-resolved DPAs of composite stimuli

Ûij
meas!sk , t" ! !

n#1

N

cn!sk" fn!si , sj , t". (8)

Ûij
meas (sk , t) is the extrapolated DPA that is based on replacing the rate

fn(si) in Equation 2 by the firing rates fn(si , sj , t) that are observed in
response to the corresponding composite stimulus.

RESULTS
Experimental results
Distributions of population activation of elementary stimuli
We constructed DPAs in response to a set of small squares of light
that only differ in their position along a virtual horizontal line and
that we termed elementary stimuli. The DPAs were defined in
visual space and were based on single cell responses from 178
neurons recorded in the foveal representation of cat area 17. To
obtain DPAs, we made use of two different approaches: (1) in a
two-dimensional Gaussian interpolation procedure, the RF cen-

ters were weighted with the normalized firing rate of each neuron
(Fig. 1D–F). Corresponding to the average RF profile of all
neurons recorded (compare Fig. 2A), the width of the Gaussian
was chosen uniformly to 0.6°; and (2) in addition, based on the
assumption that the representation of visual location can be
considered as a function of activation in parameter space, we
minimized the error for reconstructing one-dimensional distribu-
tions using the OLE procedure. This method is optimal in the
sense that it extracts the available information from the firing
rates under the condition of a least square fit.

As a reference, we calculated DPAs in the time interval be-
tween 40 and 65 msec after stimulus onset corresponding to the
peak responses in the PSTHs. Both approaches yielded equiva-
lent results. The DPAs were monomodal and centered onto each
respective visual field position. For each stimulus, Figure 2B
depicts the two-dimensional DPAs of all seven elementary stimuli
constructed by Gaussian interpolation. Figure 2C shows the OLE-
derived one-dimensional DPAs. The spatial arrangement of ac-
tivity within these distributions implies that neurons in primary
visual cortex contribute as an ensemble to the representation of
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Figure 2. A, Average RF, corresponding to the tuning for location, of all 178 recorded neurons. Based on the peak responses in the PSTHs (40–65 msec
after stimulus onset) each RF profile was smoothed by convolution with a Gaussian in two dimensions (width, 0.64°). RF centers were derived by
calculating the centroid of each profile (compare Fig. 1D3). For summation, the smoothed profiles were added with respect to their RF centers. The SD
was 0.6° (calculated for that part of the resulting average RF profile, which exceeded half of the maximal amplitude). This value of average RF width
matches the typical RF sizes found in area 17 of the cat (Orban, 1984). The vertical arrow indicates the spatial extension in terms of visual field
coordinates. B, Population representations of the elementary stimuli computed as two-dimensional DPAs over visual space after Gaussian interpolation
(compare Fig. 1). The construction was based on the activity of 178 neurons. DPAs were computed in the time interval between 40 and 65 msec after
stimulus onset corresponding to the peak responses in the PSTHs. The activation level is shown in a color scale normalized to maximal activation
separately for each stimulus (calibration bar at bottom right). Red indicates high levels of activation. The frame outlined in white depicts the area of the
visual field investigated as described in Figure 1C. In addition, the stimulus is shown as a square outlined in white. Note that for each stimulus the focal
zone of activation is approximately centered on the stimulus location. C, DPAs derived by means of an OLE for all seven elementary stimuli used. DPAs
were assumed as Gaussian profiles centered on each respective stimulus position. As in the interpolation procedure, neural activity was integrated
between 40 and 65 msec after stimulus onset. The width of the estimated Gaussian was chosen 0.6° to match the average RF width (tuning curve) of all
neurons measured (compare Fig. 2A). The maxima of the OLE-derived distributions were aligned accurately on the position of each stimulus.
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current stimulus: 
square of light

range of retinal field
sampled by neurons

the potentially high-dimensional space of visual stimulus at-
tributes. The second step consisted of projecting the neural re-
sponses to “composite” stimuli assembled from two squares of
light at varied separations (Fig. 1B) onto this subspace by ana-
lyzing DPAs weighted with the responses to composite stimuli.
Distance-dependent deviations of the DPAs from the superposi-
tion of the corresponding elementary components reveal insight
into interaction processes within the representation of retinal
location at the population level. Such interaction may arise from
recurrent connectivity within the cortical area as well as from
recurrence within the network providing the sensory input. A
neural field model explicates how such mechanisms contribute to
the evolution of cortical activation within ensembles of neurons.

MATERIALS AND METHODS
Experimental setup
Animals and preparation. Electrophysiological recordings from a total of
178 cells were made extracellularly in the foveal representation of area 17
in 20 adult cats of both sexes. Animals were initially anesthetized with
Ketanest (15 mg/kg body weight, i.m.; Parke-Davis, Courbevoie, France)
and Rompun (1 mg/kg, i.m.; Bayer, Wuppertal, Germany). Additionally,
atropin (0.1 mg/kg, s.c.; Braun) was given. After intubation with an
endotracheal tube, animals were fixated in a stereotactic frame. During
surgery and recording, anesthesia was maintained by artificial respiration
with a mixture of 75% N2O and 25% O2 and by application of sodium
pentobarbital (Nembutal, 3 mg ! kg !1 ! hr !1, i.v.; Ceva). Treatment of all
animals was within the regulations of the National Institution of Health
Guide and Care for Use of Laboratory Animals (1987). Animals were
paralyzed by continuous infusions of gallamine triethiodide (2 mg/kg, i.v.
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Figure 1. A, Schematic illustration of the elementary stimuli (squares of light, 0.4 " 0.4°) presented at seven horizontally shifted positions within the
foveal representation of the visual field. B, Composite stimuli were assembled from combinations of the elementary stimuli and were presented at six
different separation distances of 0.4–2.4°. The left stimulus component was kept at a fixed nasal position. C, I llustration of the noncentered field
approach. Stimuli, indicated by the small gray square, were presented independent of the locations of the RFs of the measured neurons (schematically
illustrated by gray ellipses). The frame with the cross-hair illustrates the analyzed portion of the visual space (2.8 " 2.0). D–F, I llustration of the Gaussian
interpolation method to construct the DPA. D1, The grid of stimuli used (36 circles, each 0.64° in diameter) to measure the RF profile of each neuron
was centered on the hand-plotted RF (response plane technique). D2, The RF profile constructed from responses to this stimulus grid was smoothed (D3)
with a Gaussian filter (width, 0.64°). The RF center was determined as the location of the centroid of this smoothed RF profile. D4, The contribution
of each cell to the population representations was always centered on this location and was weighted with the current firing rate of the neuron, illustrated
as vertical bars of varying length. This weighting factor was normalized to the maximal firing rate of each neuron. E, The DPA was obtained by Gaussian
interpolation (width, 0.6°) of the weighted firing rates and by a subsequent convolution with an unweighted Gaussian (width, 0.64°). F, View of the
distribution of population activation using gray levels to indicate activation. The location of the stimulus is indicated by the small square outlined in black
together with the stimulus frame. In a second approach, one-dimensional DPAs were derived by means of an OLE; see Materials and Methods and
Figure 2C.
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=> observe interaction in DPA

(30–45 msec) and a late (45–80 msec) epoch. For the early
period, we compared the population representation of composite
stimuli to the superpositions. Because we expect to find excitatory
interaction, this is a conservative comparison, because saturation
effects would tend to limit the responses. The solid line in Figure
10 shows the difference between the activation in response to the
composite stimuli and the activation in the superimposed re-
sponses expressed in percent of the latter. In this early response
epoch, there was more activation in the measured than in the
superimposed responses at all distances except the largest (2.4°).
This excess activation, which reached a maximum of 58% at a
stimulus distance of 1.6°, is evidence of distance-dependent exci-
tatory interaction during the build-up phase of the DPAs of
composite stimuli.

That the activation with composite stimuli exceeded even that
of the superpositions demonstrates that response saturation is not
the cause of the apparent inhibitory interactions observed in the

time-averaged analysis. Accordingly, the time-averaged inhibi-
tory effect (compare Figs. 6, 7) originates from the late response
epoch of 45–80 msec after stimulus onset. For this epoch, the
dashed line in Figure 10 shows the relative difference of responses
to composite as compared to elementary stimuli. At all stimulus
separations, the difference is negative, indicating inhibition below
the activation level for a single stimulus. This inhibition is slightly
stronger for larger stimulus separations, providing further evi-
dence for distance-dependent late inhibitory interaction. More-
over, it confirms that response saturation is not an explanation for
this inhibitory effect.

Spatial interaction: repulsion effect
The neural field model predicts (see next section) that inhibitory
interactions are dominant at larger distances, resulting in a re-
pulsion effect for the apparent position of two stimulus compo-
nents. We tested this prediction using the OLE-derived distribu-

0.4˚

Figure 6. The measured two-dimensional DPAs (top) of composite stimuli (from lef t to right, 0.4–2.4° separation) were compared to the superpositions
of the representations of their component elementary stimuli (bottom). The DPAs were based on spike activity of 178 cells averaged over the time interval
from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2B, the color scale was normalized to peak activation separately for each column.
For small stimulus separation, note the remarkably reduced level of activation for the measured as compared to the superimposed responses. The bimodal
distribution recorded for the largest stimulus separation comes close to match the superposition. However, inhibitory interaction can still be observed.
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Figure 7. The OLE-derived DPAs for the composite stimuli as depicted in Figure 6. Solid lines mark the measured activations, and dashed lines show
the calculated superpositions (vertical lines mark stimulus positions). Peak activation was uniformly normalized. As demonstrated for the interpolated
two-dimensional DPAs, the level of measured activation was systematically reduced for smaller stimulus separations but approached linear superposition
for larger separations. The transition from monomodal to bimodal distributions was found between 1.2 and 1.6° separation. A slight asymmetry of the
amplitudes between the representations of the left and the right stimulus component was found for the measured as compared to the superimposed
distributions for stimulus separations of 1.2 and 1.6°.

9022 J. Neurosci., October 15, 1999, 19(20):9016–9028 Jancke et al. • Population Dynamics within Parametric Space

response to composite stimuli

increasing distance between the two squares of light

superposition of responses to each elemental stimulus

Neural grounding of DFT: sensory 

composite stimulus: 
two locations inhibitory

interaction



DPA of orientation and (1D) retinal location

[Jancke, JNeursci (2000)]
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[Bastian, Riehle, Schöner, Europ J Neurosci 2003]

movement
direction

Example 2: primary motor cortex (M1)

DPA of movement direction of the hand 

Neural grounding of DFT: motor 



trials aligned by go signals, ordered by reaction time

hand lands on target

hand lifts off start button

[Bastian, et al J Europ J 
Neurosci 2003]

tuning to movement direction

Neural grounding of DFT: motor 

trials aligned by go signal
ordered by RT
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DFT

an estimation procedure through which a distribu-
tion of activation over the movement parameter
‘direction’ can be constructed. (2) The notion of
preshaping of neural representations is employed to
search for specific use of prior information. By
extrapolating the estimation procedure for popula-
tion representations into periods in which incomplete
information about movement direction is available,
the preshaping of these representations can be
observed. (3) To detect experimentally such
preshaping, the amount and metric range of prior
information is varied by precueing either one, two
or three adjacent movement targets.

Materials and Methods

A monkey (Macaca mulatta) was trained to perform
pointing movements. It was cared for in the manner
described in the Guiding Principles in the Care and
Use of Animals of the American Physiological Society.
The animal sat in a primate chair in front of a vertical
panel on which seven touch sensitive light emitting
diodes (LED) were mounted, one in the center and
six equidistantly on a circle around the center. A trial
started when the center target was illuminated. The
animal had to touch the center target and wait for
the preparatory signal (PS), consisting of the illumi-
nation of one or several targets in green. After a
preparatory period (PP) of 1 s, one of the green
targets turned red, thus providing a response signal
(RS), which instructed the animal to release the center
button and to point at the specified target. Three
different types of prior information were presented:
(i) complete information in which a single target was
illuminated; (ii) partial information with two adjacent
targets illuminated; (iii) partial information with three
adjacent targets illuminated. Each of the three types
of prior information was presented in a separate block
of about 120 trials. Within each block, all possible
movement directions were presented randomly.

After training, the animal was prepared for
surgery. A circular recording chamber was placed
under halothane anesthesia (< 0.5% in air) over the
dorsal premotor cortex contralaterally to the task
performing arm. A T-bar was fixed on the skull 
in order to immobilize the animal’s head during 
the experimental session. A multi-electrode micro-
drive (Reitboeck device, Uwe Thomas Recording,
Marburg) was used to transdurally insert seven
independently driven micro-electrodes (impedance
1–4 M! at 1 kHz) into the motor cortex. Action
potentials of single neurons were recorded extracel-
lularly and isolated using a window discriminator.
Only neurons that changed significantly (one-factor
analysis of variance) their activity as a function of
movement direction during reaction time (time from
the occurrence of the RS until the initiation of move-
ment observed as the release of the center button),
or during movement time (time from the initiation
of movement until the hand touches the target) were
selected for the further analysis at the population
level. The activity of 40 of 56 neurons (71%) recorded
in the condition of complete information, 46 of 57
neurons (81%) recorded in the condition of partial
information with a precue of two targets, and 41 of
49 neurons (84%) recorded in the condition of partial
information with a precue of three targets reached
statistical significance.

The construction of a population representation 
of movement direction is technically similar to the

A. Bastian et al.
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FIG. 1. The dynamic field model of movement preparation repre-
sents the movement parameter ‘direction’ ("), by an activation field,
u("). Peaks of activation represent the parameter value at which
they are localized. The field evolves continuously in time as governed
by a dynamic system:

#uu. (",t) = – u(",t) + !w(" – ") f (u(",t)) d"$
+v(t) + h(t) + S(",t)

#vv
.(t) = – v(t) + c!f(u(",t))d"

Sensory information associated with the preparatory signal, PS, and
the response signal, RS, is modelled as localized excitatory input,
S(",t) and global excitatory input, h(t). Interaction within the field
(local excitation, global inhibition, w(" – ")) stabilizes a single local-
ized peak of activation as the target state of the field. The activa-
tion induced by input stimulation is transiently suppressed again by
an inhibitory process, v(t). The figure shows the temporal evolution
of the activation field in two cases. (A) When the preparatory signal
specifies completely the movement direction (at target 3), the corre-
sponding input preshapes the field at the specified location. The
response signal drives this localized peak transiently to higher levels
of activation. (B) When, by contrast, the preparatory signal speci-
fies two neighboring targets (at targets 3 and 4) the field is more
broadly preshaped and its maximum is centered on the average of
the two precued movement directions. The response signal now
leads not only to an increase of activation, but also to a shift of the
peak location toward the specified target (target 3) and a sharpening
of the distribution.



methods used by Georgopoulos and colleagues9 to
construct the population code, although the goal
persued with this construction is different. Inquiries
into population code typically ask which movement
parameters are represented by populations of neurons
in motor cortex. Although movement direction is
clearly coded for in motor cortex, neural firing may
also depend on parameters such as movement extent,
arm configuration, or shoulder joint angle.10–12 We
simply conclude from the tuning of single neurons
to movement direction that motor cortical neurons
contribute to the represention of that parameter,
among the potentially many other representations
that they might contribute to. To inquire about
movement direction, we projected from this
potentially high-dimensional space onto the axis
representing movement direction, !. This can be 
done by constructing a population distribution of
activation defined over the space of movement direc-
tions. The distribution was built from basis functions,
which we chose as the tuning curves of each neuron.
By weighting (multiplying) the tuning curve with the
current firing rate, population representations were
constructed for the various experimental conditions
and at different points in time. Specifically, for each
of the three types of prior information (complete,
two-target, three-target), a population representation
was constructed for each value of the preparatory and
response signal, that is, for each possible direction.
The combination of targets presented as preparatory
and response signal is designated in the formula as
‘configuration’.

The mathematical definition reads

uconfiguration(!,t) = " tuningi(!)#firingrateconfiguration(i,t)
neurons i

where the index i indicates the individual neurons in
the population. The firing rate of neuron i in a partic-
ular configuration was obtained by averaging within
a time slice beginning at time t. Thus, the population
representation could be estimated as a function of
time. A normalization factor was introduced to
smooth the density at which the parameter ‘move-
ment direction’ was sampled by the preferred direc-
tions of the cells. The tuning curves were obtained
from neural firing rates averaged over the reaction
time interval. Note that computing the population
representation during the reaction time interval is
thus somewhat tautological, but extrapolating this
estimator into other periods is not.

Means were computed from the population
representation by treating it as a probability distrib-
ution and using circular statistics.13 The width of the
population representation was obtained by using the
concentration measure of circular statistics. Because
the population representation is unnormalized, the

concentration was calculated after the areas under 
the population distributions at different configura-
tions were all equaled by adding or subtracting
appropriate constants.

Population representations of movement direction
were computed on the basis of the recorded activity
of 40 neurons for the condition of complete infor-
mation and 22 neurons for each of the two condi-
tions of partial information.

Results
The temporal evolution of the population represen-
tation is shown for the condition of complete
information (Fig. 2A) and for the condition of two
target information (Fig. 2B). The following state-
ments hold true for all movement directions: (1)
Neuronal activation increased in response to the
preparatory signal and in response to the response
signal. After a first maximum of activity following

Representation of movement direction in motor cortex
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FIG. 2. The population representation of movement direction as
constructed from neural responses of a population of motor cortical
cells is shown when complete prior information (A, target 3 was
precued at PS and specified at RS) and two target prior information
(B, targets 3 and 4 were precued at PS and target 3 was specified
at RS) is provided. The time slices for the computation of the popu-
lation distribution are 100 ms. Note how the population distribution
is preshaped in response to the preparatory signal. Location and
width of activation reflect the range and contents of prior informa-
tion. If complete information is provided (A) the activation peak is
localized over the precued target during the preparatory period and
the distribution increases in activation and sharpens subsequent to
the RS. At two target prior information (B), the preshaped distribu-
tion is centered broadly on the precued range, whereas after presen-
tation of the RS its peak shifts towards the specified value while
sharpening.



[Bastian, Riehle, Erlhagen, Schöner, 98]

Neural grounding of DFT: motor 

DPA



Distributions of Population 
Activation as the neural grounding 

of dynamic neural fields 

neurons are not localized within a DPA! 

=> neural fields abstract from the cortical 
surface and sampling by discrete neurons



… back to DFT

field dimensions reflect the input/
output connectivity from which 
the tuning of neurons derives

activation
field
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sensory surface
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motor 
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