
CEDAR tutorial and exercise

DFT Summer School 2021

Get CEDAR

Please download the precompiled version of CEDAR for your operating sys-
tem from https://cedar.ini.rub.de. You should then be able to run it
by executing the cedar.app or cedar.bat file in the main folder. No need
to install anything.

If you missed part of the CEDAR tutorial during the school and are hav-
ing trouble operating CEDAR, please have a look at the video at https://

cedar.ini.rub.de/tutorials/installing_and_running_cedar/, where some
of the main functions are explained. If you are still stuck, contact one of the
tutors for help via the discussion forum.

1 Multi-peak detection

Create a two-dimensional field (NeuralField step). This field may represent
a two-dimensional surface, like a table top. Peaks in the field represent
objects on that surface.

The field may receive input from sensors, for instance a vision sensor. For
the tutorial, we simplify this and work with simulated input that we create
with a combination of 2D Gaussian functions at different positions. This
will allow us to make quick changes to our “scene” and test our architecture.
Create three Gaussian functions (GaussInput step) and feed them all into a
Sum step. Plot the output of the Sum step and tune the parameters of the
Gaussian functions such that their centers are in three different positions in
the two-dimensional space. This now simulates neural activation that we may
receive from a sensor, where high values represent objects in the scene. Feed
the output of the Sum step into a StaticGain step to be able to change the
overall strength of that activation, then feed that into your two-dimensional
field.

Tune the field so that it forms a stabilized peak at every input location.
This requires that the strength of the input is large enough to drive the field

1



activation above threshold at the input locations.
Once that works, try (slowly) moving the “objects in the scene” and

observe whether the peaks follow the moving input. What happens when
you move the objects too quickly?

2 Working memory

Create a copy of the field (Ctrl+D) which then also receives input from
our simulated scene (the StaticGain step after the Sum step). This field
will serve as a working memory representation of all objects in the scene.
Tune this field to be in a self-sustained regime. That is, peaks that form
in this field should not decay, even if the input that brought them about is
removed. You can simulate removing an object by switching the amplitude
of the corresponding GaussInput to zero.

To bring a field into a self-sustained regime, it needs strong local ex-
citation such that active positions in the field excite themselves and their
neighbors so much that they will not drop below threshold when the input is
removed. Strong local excitation can be achieved in CEDAR by increasing
the amplitude of the kernel. You will notice that this regime requires such
strong local excitation that the peaks merge or spread along the entire fea-
ture dimension.1 To prevent this, we counteract the strong local excitation
with inhibition. Since we want multiple self-sustained peaks, we introduce
mid-range as opposed to global inhibition.2 Turn off the global inhibition
by setting the corresponding parameter to zero. In CEDAR, mid-range in-
hibition can be added through an additional kernel mode. Under “lateral
kernels”, select “Gauss (cedar.aux.kernel)” and click the small “+” button.
Now you should have two “lateral kernel” sections underneath, numbered
“[0]” and “[1]”. Number zero is our excitatory kernel mode, modeling local
excitation with a positive amplitude, while number one is our inhibitory ker-
nel mode, modeling mid-range inhibition with a negative amplitude and a
wider width (try twice as wide as the excitatory mode). The sum of these
two kernel modes forms the characteristic “Mexican hat” type kernel. De-
pending on your chosen parameters, you may be able to see that shape when
you plot the kernel: right-click the field, then select plot→full lateral kernel.

Once you have tuned the field to have self-sustained peaks for every object
in the scene, try again to slowly move an object in the scene. The peak should

1Remember, when this happens, you can reset the activation of the entire architecture
by clicking the “Reset” button in the top left.

2Global inhibition will additionally make the field selective and allow only a single
peak. We will use this feature in the next task.

2



follow the moving input.

3 Selection

Create another copy of the field, which then also receives input from the
simulated scene, as above. Tune this field to make a selection decision, that
is, it should only form a peak at a single position, even when multiple objects
are in the scene. Make sure that the field is not in a working memory regime,
that is, the peak should disappear when you remove the object from the scene.

For this, you should only have a single excitatory kernel mode. If you
still have an inhibitory kernel mode in your parameters, you can delete it by
clicking the small “X” in the top right corner of the parameters of the kernel
mode. Replace the mid-range inhibition by global inhibition. In CEDAR,
global inhibition is a separate parameter with a negative scalar value. Be
careful with this parameter as even small values will have a large impact.

Once the field is in a selective regime, play with adding and removing
objects to and from the scene. At the position of which objects does the
peak form? Can you control this by the relative strengths of the individual
inputs (objects)?

When all objects have the same strength, at the position of which object
does the peak form? Try to make its selection decision random by increasing
the noise strength within the field.

Can you observe hysteresis in the field—that is, does the field make a
different selection decisions based on its previous selection decisions?

4 Exercise: A small architecture for spatial

language

We can now create a small architecture from these types of fields. We will
build a very much simplified version of an architecture for spatial language
that is able to select objects based on their spatial position and commit the
selected object to working memory. Figure 1 shows a simple diagram of the
architecture.

Create a two-dimensional multi-peak neural field that receives input from
the simulated input and creates peaks. This will be our representation of a
“scene” of multiple objects on a table. We will call this the “scene represen-
tation” field.

Create another two-dimensional field and call it “spatial match”. It
should receive input from the “scene representation” field, strong enough

3



scene input

scene representation

spatial match

working memory

region input

Figure 1: Diagram of the small architecture for spatial language. Peaks are
denoted by red circles, subthreshold bumps by orange circles. The subthresh-
old region-input is shown as a yellow ellipse, here highlighting the left part
of the field.

to only form subthreshold bumps of activation in the “spatial match” field,
but not form peaks. Additionally, we will add input that highlights specific
regions within the field. Only when the subthreshold bumps (that represent
the objects) overlap with these highlighted regions, may the field form peaks.
For each region that we want to highlight, for instance the entire left side of
the field, we add a GaussInput step as input to the “spatial match” field and
set the parameters such that the Gauss function covers the region of the field
we want to highlight. It is up to you which regions or how many of them you
implement. You could, for instance, create four such regions by adding four
GaussInput steps that cover the left, right, top, and bottom regions of the
field, respectively. Or get creative and create inputs that cover other regions
that you can think of. Having a GaussInput step per region will later allow
you to control, which of the regions is highlighted, by switching the inputs
off and on by hand.

Tune the “spatial match” field to be selective, that is, to only allow for
a single peak to form at a time. Once this works, it should naturally select
the object that fits the highlighted region best.

Create one more two-dimensional multi-peak field, and call it “working
memory”. It should receive input from the “spatial match” field and form
a peak whenever there is a peak in that field. Tune the “working memory”
field to be in a self-sustained regime such that the peaks remain stable even
if the “spatial match” field later creates a peak at a different location.

Play with the spatial position of objects in the scene, as well as highlight-
ing different regions within the field. You can do so by turning off the input
of all but one of the region-inputs, or activate different combinations. You

4



could even implement more complex regions like “central” or “peripheral”
by combining different GaussInput steps.

You can think of the region-input as a “command”, telling the archi-
tecture to “select an object on the left side” or “select the central object”.
The mechanism of matching spatial positions to regions is the basis for a
(much more) complex architecture of relational spatial language that we will
discuss later in the summer school. This architecture deals with selecting
objects from the scene based on their features (e.g., color and movement
direction), matching objects based on their relative positions to each other,
rather than just the spatial position in the scene, and orchestrating all the
neural processes autonomously, rather than requiring the user to manually
activate and deactivate different regions.

5


