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attention/gaze

active perception/working 
memory

action plans/decisions/ 
sequences

goal orientation

motor control 

background knowledge

learning from experience

Cognition in the wild…Introduction



=> implied properties of the underlying 
neural processes 

graded state 

continuous time 

continuous/intermittent link 
to the sensory and motor 
surfaces 

from which discrete events 
and categorical behavior 
emerge

in closed loop

=> states must be stable



Embodiment hypothesis

all cognition is like soccer 
playing = has the properties 
of embodied cognition

=> there is no particular 
boundary up to which 
cognition is embodied and 
beyond which it is 
computational/symbolic



Five things needed to 
generate behavior 

source structured
environment

intensity

activation

wheel
motion

activation

sensory
system

body

nervous
system

motor
system

intensity

sensors

motors

linked by a 
nervous system

linked physically 
by a body

an appropriately 
structured 
environment

Braitenberg



Emergent behavior: this 
is a dynamics

feedforward nervous system

+ closed loop through 
environment

=> (behavioral) dynamics

heading
direction

heading
direction

differences in 
intensity
left-right

intensity

heading
direction

turning rate
of vehicle

differences in 
intensity
left-right

source

differences in 
turning rate 
left-right wheel



mental decisions, 
working memory..

Emergent cognition 
from neural 
dynamics

source1

dimension

activation

source2



inputs from 
dendrites

spike 
formation at 
soma

output at 
axon

Neurons as input-output units
Neurophysics



threshold behavior



temporal summation



Neural dynamics

replace spiking by a sigmoidal 
threshold function

as an abstraction of the membrane 
potential 

=> low levels of activation are not 
transmitted (to other neural systems, to 
motor systems)

=> high levels of activation are transmitted 

threshold at zero (by definition) 0.5 

1 
β 

0 

g(u)

u 

Neural dynamics



Neural dynamics
stationary state=fixed point= constant solution

stable fixed point: nearby solutions converge to the 
fixed point=attractor

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)

du/dt = f(u)

u

resting
level

vector-field



Neural dynamics

attractor structures ensemble of solutions=flow

⌧ u̇(t) = �u(t) + h

du/dt = f(u)

u

resting
level

vector-field
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time, t
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resting
level

τ



Neuronal dynamics

inputs=contributions to 
the rate of change

positive: excitatory

negative: inhibitory

=> shifts the attractor

activation tracks this 
shift (stability)

⌧ u̇(t) = �u(t) + h + inputs(t)

u

h+s

input, s

resting
level, h 

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, s



Neuronal dynamics with self-excitation

single activation variable with self-
excitation

representing a small population with 
excitatory coupling 

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))



⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation

u 

du/dt 

resting
level, h

0.5 

1 
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g(u)

u 



Stability from neural dynamics

autonomous activation from interaction 

·u(t) = − u(t) + h + input(t) + σ(u(t))

u 

du/dt 

resting
level, h

input strength

“on”“off”
stable states

detection instability

working memory

reverse detection 
instability 



Neuronal dynamics with competition

two activation variables with 
reciprocal inhibitory coupling

representing two small 
populations that are 
inhibitorily coupled

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



Neuronal dynamics with competition

Coupling: the rate of change 
of one activation variable 
depends on the level of 
activation of the other 
activation variable

coupling

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



Neuronal dynamics with competition

0

0

u 1

resting state
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st
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u 
2

before input is presented after input is presented

=>biased competition



Neural fields

self-
excitation

mutual
inhibition

s(x)
u(x)

u1 u2

x

s1
s2

self-
excitation



Neural fields

… the same underlying math 

coupling among continuously many activation 
variables

local excitatory coupling (“self-excitation”)

global inhibitory coupling (“mutual inhibition”)

τ ·u(x, t) = − u(x, t) + h + s(x, t) + ∫ dx′ w(x − x′ ) σ(u(x′ , t))

σ(u)

u

x-x'

w(x-x')



Neural fields

forward connectivity thus 
generates a map from 
sensory surface to feature 
dimension

neglect the sampling by 
individual neurons => 
activation fields

sensory signal, s(x)

dimension, y

dimension, x

activation
field, u(y)



Example motion perception: 
space of possible percepts 

activation

motion directionhorizontalposition

ve
rt

ic
al

 p
os

iti
on

horizontal position

motion
direction 0



Neural fields

analogous notion for 
forward connectivity to 
motor surfaces… 

(actually involves 
behavioral dynamics)

(e.g., through neural oscillators 
and peripheral reflex loops)

motor 
dimension, r

activation
field, u(r)

motor
state, r

dr/dt



Example: movement planning: 
space of possible actions

movement
direction

movement
amplitude

activation

movem
ent

direct
ion

movement
amplitude

0



Dynamic of neural fields

peaks as attractors

detection instability

working memory

selection

τ ·u(x, t) = − u(x, t) + h + s(x, t)
σ(u)

u

x-x'

w(x-x')

+∫ dx′ w(x − x′ ) g(u(x′ , t))

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

S(u)

u

Detection



Attractors and their instabilities

input driven solution (sub-
threshold) 

self-stabilized solution 
(peak, supra-threshold)

selection / selection 
instability 

working memory / memory 
instability 

boost-driven detection 
instability

detection 
instability

reverse
detection 
instability

Noise is critical
near instabilities



The detection instability stabilizes 
decisions

threshold piercing detection instability
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The detection instability leads to 
the emergence of events

the detection instability explains 
how a time-continuous neuronal 
dynamics may create 
macroscopic events at discrete 
moments in time time, t

u(t)

detection 
instability

reverse
detection 
instability



Selection decisions are stable
Selection



reaction time (RT) paradigm

time

imperative 
signal=
go signal

response

RT

task set



metric effect

predict faster response 
times for metrically close 
than for metrically far 
choices
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[from Schöner, Kopecz, Erlhagen, 1997]
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activation leaves a trace that may influence the 
activation dynamics later…  in a simplest form of 
learning, the “bias ” term of NN 

The memory trace

0
20

40
60

80
5

10
15

 20
0

20

0
20

40
60

80
5

10
15

0
0.2
0.4

memory
trace

dimension

activation

time

dimension

time

powerful in DFT 
because the 
detection instability 
may amplify the 
induced into peaks 
of activation

Memory



Tuning of neurons

Bastian, Riehle, Schöner, 2003

movement
direction

Neural grounding



Distribution of Population 
Activation (DPA) <=> neural field

precue

response
signal
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[Bastian, Riehle, Schöner, 2003]
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at
io

n

movement direction 
required in this trial

movement direction

Distribution of population activation =
tuning curve * current firing rateΣ

neurons

[after Bastian, Riehle, Schöner, submitted]

note: neurons are not 
localized within DPA! 



NE33CH13-Cisek ARI 22 May 2010 19:1

Cells

Time

500 ms

Spatial cues

Color cue

Go signal

+100–10

Activity
with respect to

baseline

Memory
period

Figure 2
Population activity in the dorsal premotor cortex during a reach-selection task. The 3D colored surface
depicts neural activity with respect to baseline, with cells sorted by their preferred direction along the
bottom edge. Diagrams on the left show the stimuli presented to the monkey at different points during the
trial (cross indicates the cursor). Note that during the period of ambiguity, even after stimuli vanished, the
population encodes two potential directions. Data from Cisek & Kalaska (2005).

converted to a motor plan after the decision
is made. In contrast, we propose that multiple
movement options are specified within the same
system that is used to prepare and guide the ex-
ecution of the movement that is ultimately se-
lected. The simultaneous specification of mul-
tiple actions can even occur when only a single
object is viewed. For example, the multiple af-
fordances offered by a single object can evoke
neural activity in the grasp-related area AIP that
can represent several potential grasps until one
is instructed (Baumann et al. 2009), in agree-
ment with the predictions of theoretical models
(Fagg & Arbib 1998).

Evidence that the nervous system can si-
multaneously represent multiple potential ac-
tions suggests a straightforward interpretation
of the finding, described above, that early re-
sponses in many premotor and parietal re-
gions first appear to encode information about
relevant stimuli and later change to encode
motor variables. Perhaps the early activity,

time-locked to stimulus appearance, does not
encode the stimuli themselves but rather the set
of potential actions that are most strongly asso-
ciated with those stimuli (Wise et al. 1996), such
as actions with high stimulus-response com-
patibility (Crammond & Kalaska 1994). This
would imply that the functional role of this ac-
tivity does not change in time from sensory to
motor encoding but simply reflects the arrival
of selection influences from slower but more
sophisticated mechanisms for deciding which
action is most appropriate.

Recent computational models have pro-
posed that whenever multiple potential targets
are available, representations of potential ac-
tions emerge within several frontoparietal neu-
ral populations, each composed of a continuum
of cells with different preferences for the po-
tential parameters of movement (Cisek 2006,
Erlhagen & Schöner 2002, Tipper et al. 2000).
In each population, cells with similar prefer-
ences mutually excite each other (even if they
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[Cisek, Kalaska 2005]

Decision making 
in DPA

dorsal
pre-motor 

cortex



Joint representations

“anatomical” binding

example: a joint 
representation of color 
and visual space “binds” 
these two dimensions

Space-Color Field

−30° −20° −10° 0° 10° 20° 30°
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spatial location

space-color
field

0

90

180

270

360

visual scene

for now: 2D field, one spatial
dimension and one color dimension

color processing in visual cortex not
fully understood, but population
code over hue values is a reasonable
simplification

qualitatively same e↵ects as in 3D
field, but easier to visualize in 2D

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 7 / 37

[Schneegans et al.,Ch 5 of DFT Primer, 2016]

Binding



Extract the bound features

project to lower-
dimensional fields 

by summing along the 
marginalized dimensions

(or by taking the soft-
max)

Read-out from high-dimensional field

−30° −20° −10° 0° 10° 20° 30°

0

10

−10

010 −10
activation

co
lo

r (
hu

e 
va

lu
e)

spatial location
co

lo
r f

ie
ld

space-color
field
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visual scene

spatial field

fields of di↵erent dimensionality
can interact with each other

read-out of one feature
dimension: integrate over
discarded dimensions

e.g. spatial readout:

IS(x) =

Z
f (uv (x , y))dy

often additional Gaussian
convolution in read-out for
smoothness (reflects synaptic
spread in biological system)

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 10 / 37

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Assemble bound representations
project lower-dimension field onto higher-
dimensional field as “ridge input” 
Ridge Inputs to Multi-Dimensional Fields
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projection from 1D to 2D: ridge input
does only specify value in one dimension, homogeneous in the other
should typically not induce a peak by itself

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 11 / 37

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Assemble bound representationsRidge Intersections

−30° −20° −10° 0° 10° 20° 30°

0

10

−10

010 −10
activation

co
lo

r (
hu

e 
va

lu
e)

spatial location

co
lo

r f
ie

ld

space-color field

0

90

180

270

360

visual scene

spatial field

intersection of 1D ridges can
specify location in 2D

binding problem when multiple
items are present

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 12 / 37

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Feature Conjunctions and Feature Binding

co
lo

r (
hu

e 
va

lu
e)

0

90

180

270

360

−30° −20° −10° 0° 10° 20° 30°

0

10

−10

010 −10
activation

spatial location

co
lo

r f
ie

ld

space-color field

visual scene

spatial field

multiple ridges create additional
intersections

1D fields with multiple peaks do
not specify which features
belong together

combined representation
necessary to resolve feature
binding problem

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 13 / 37

binding problem: 
multiple ridges along 
lower-dimensional space 
lead to a 
correspondence 
problem

=> assemble one object 
at a time… 

=> sequentiality bottle-
neck!

Assemble bound representations

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Search
Visual Search
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combine top-down feature input
(1D) with bottom-up localized
input (2D)

read out spatial position of
matching item

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 14 / 37

ridge input along one 
dimension extracts 
from bound 
representation matching 
objects

other dimensions of 
those objects can then 
be extracted

e.g. visual search 

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Coordinate transforms
DNF Mechanism for Reference Frame Transformation
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[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



Perceptual grounding of a 
relation: bringing the 
target object into the 
attentional foreground

“red to the left of green”

target reference

[Lipinski, Sandamirskaya, Schöner 2009
… Richter, Lins, Schöner, Topics 2017]

Perceptual grounding of concepts



into the reference and target field and enable these fields to track moving objects even if
spatial attention is currently focused elsewhere.

3.2. Attention

The core of the attentional system consists of two three-dimensional attention fields.
They are defined over the same dimensions as the two perception fields, but their activa-
tion remains below threshold unless additional input arrives from a feature attention field
or a spatial attention field.

Fig. 2. Architecture with activation snapshots while it is generating a phrase about a video. Fields are shown
as color-coded activation patterns; for three-dimensional fields, two-dimensional slices are shown. Node acti-
vation is denoted in opacity-coded circles. Spatial templates are illustrated as color-coded weight patterns
(bottom left). Excitatory synaptic connections are denoted by lines with arrowheads, inhibitory connections
by lines ending in circles. Transformations to and from polar coordinates are marked with a “T.” Steerable
neural mappings are denoted as diamonds.

40 M. Richter, J. Lins, G. Sch€oner / Topics in Cognitive Science 9 (2017)

[Richter, 
Lins, 

Schöner, 
ToPiC 
(2017)]



green

left

red

“red to the left of green”



Sequential behaviors or mental acts

behaviors/mental states are attractors

that resist change…

to induce change in sequential behavior/
thinking: induce an instability 

Sequence generation



Sequence generation
the CoS organizes the transition away from on ongoing 
behavior/mental state 

based on a signal from perception or from an inner 
state of a neural architecture that is predicted to be 
indicative of successful completion of the behavior/
mental act

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

prediction





What skills do you learn?

academic skills
read and understand scientific texts 

write technical texts, using mathematical concepts and 
illustrations 



What skills do you learn?

mathematical skills
conceptual understanding of dynamical systems

capacity to read differential equations and illustrate them 

perform “mental simulation” of differential equations

use numerical simulation to test ideas about an equation



What skills do you learn?

interdisciplinary skills
handle concepts from a different discipline

handle things that you don’t understand 

sharpen sense of what you understand and what not 


