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Abstract

Limitations both for the further development as well as for the actual technical application of autonomous robots arise from
the lack of a unifying theoretical language. We propose three concepts for such a language: (1) Behaviors are represented
by variables, specific constant values of which correspond to task demands; (2) Behaviors are generated as attractors of
dynamical systems; (3) Neural field dynamics lift these dynamic principles to the representation of information. We show
how these concepts can be used to design autonomous robots. Because behaviors are generated from attractor states of
dynamical systems, design of a robot architecture addresses control-theoretic stability. Moreover, flexibility of the robot
arises from bifurcations in the behavioral dynamics. Therefore techniques from the qualitative theory of dynamical systems
can be used to design and tune autonomous robot architectures. We demonstrate these ideas in two implementations. In one
case, visual sensory information is integrated to achieve target acquisition and obstacle avoidance in an autonomous vehicle
minimizing the known problem of spurious states. In a second implementation of the same behavior, a neural dynamic
field endows the system with a form of obstacle memory. A critical discussion of the approach highlights strengths and
weaknesses and compares to other efforts in this direction.

1. Introduction Flexibility in this sense comprises switching among

different elementary behaviors, adapting behaviors in

Although there are probably at least as many defi-
nitions of the concept “autonomous agent” as contri-
butions to this special issue, two fundamental require-
ments are, we believe, generally agreed upon: (1) Au-
tonomous agents structure their behavior on the basis
of sensory information that they themselves acquire.
(2) Such autonomy goes beyond the sensor-driven na-
ture of control systems in that it is flexible. Minimally
this means that an agent may change its behavior qual-
itatively under the influence of sensory information.
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structured environments, learning new behaviors, and
maintaining behaviors in the face of structural change
of the system itself (robustness).

There is a latent, but inherent, conflict between these
two requirements: Basing one’s action on sensory in-
formation implies that one establishes a continuous
link between sensing and acting. Flexibility implies
that such a link must be relinquished at times in or-
der to free the system to establish new and different
relationships between sensing and acting.

If one looks at the history of autonomous robotics
from this angle, one might interpret the two main lines
of research, the control theoretic and the artificial in-
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telligence approaches, to flow from two different at-
titudes taken with respect to this inherent conflict. In
control theory, goals are achieved by establishing a
particular link between system parameters and sensed
consequences of the system’s action. Thus, no need
arises to extract a priori the relevant information about
a particular goal from the sensory array. For example,
a vehicle can be guided to a particular location by re-
ducing the sensed deviation from this location to zero,
without ever determining from the sensor readings the
actual position in space of the vehicle (e.g., [38]).
Within this approach it is quite difficult, although not
impossible, to simultaneously achieve several differ-
ent goals, to flexibly change goal, or to generate be-
havior that is not so directly linked to on-line sensory
information (for example, navigating based on mem-
orized information that is not currently available at the
sensory surface).

By contrast, the cognitive or artificial intelligence
approach has addressed from the outset the need to
separate the system from its environment by intro-
ducing representations of the world, which are invari-
ant under important classes of transformations and ac-
tions. For instance, a symbolic description of a work
space in terms of extereospecific object descriptions
is invariant under such operations as moving the ob-
server around, changing lighting conditions (for op-
tical sensors), or any other change in those dimen-
sions of the sensing-acting cycle that are not included
in the symbolic description. Action is then planned
at the level of such invariant representations and plan
execution is essentially open loop. Flexibility is auto-
matic in such a scheme, in that one may take many
different attitudes to represented information simply
through algorithms that include decision points. For
example, an object may either serve as target, as tcol,
or as obstacle, and corresponding action plans may be
derived. On the other hand, the notorious difficulty to
generate and update adequate representations of the
world on the basis of sensor readings makes it much
more difficult to maintain a link between acting and
sensing in a natural (that is irregular and changing)
environment.

Still from this particular viewpoint, the behavior-
based approach [9,12] could then (only in hindsight,
of course) be interpreted as an attempt to return to con-
trol theoretic ideas. The individual elementary behav-
iors that robots are to be built up from, can essentially

be viewed as control systems. They do not require ex-
traction of invariant information and representations,
because they are not flexible by themselves. Instead,
special purpose control-like linkages between sensors
and actuators can generate basic behaviors. The new
idea in the behavior-based approach is to generate flex-
ibility by having behaviors interact with each other.
In the more rigorous formulation, this interaction is to
be free of exchange of information (so as to strictly
avoid the extraction of invariants) and limits itself to
turning on and off behaviors (which includes, how-
ever, the ability to use or subsume behaviors).

The interaction among elementary behaviors re-
mains the Achilles heel of behavior-based systems.
This problem is sometimes called the problem of
architecture and a number of proposals has been
made to overcome it [11,5,3,40,54]. These range
from radical ideas that minimize the notion of state
and operate in pure feed-forward fashion [14] to
ideas compatible with cognitive approaches such as
superposition of vector fields generated by schemata
[4]. We believe that it is at this point that lies the
fundamental limitation of our current methods. The
absence of clear theoretical concepts for this archi-
tectural problem hinders the further development of
autonomous agents in two ways: First, by making it
difficult to scale up the number of elementary be-
haviors and the number of corresponding sensor and
effector subsystems. Second, by making it difficult
to attain more invariant (i.e., more cognitive) types
of behaviors such as the capabilities to memorize, to
fuse sensory information from different sources, or to
generalize.

The aim of this paper is to discuss a particular the-
oretical language in terms of which one might attempt
to build such architectures. There are three elements
of this language: (1) the concept of behavioral vari-
able; (2) the concept of behavioral dynamics from
which behaviors are generated through attractors; (3)
the principle of neural representation of information,
which can be made dynamic by allowing for the self-
generation of neural activation patterns. In Section 2
we introduce the theoretical ideas in a tutorial form.
Two exemplary applications of these ideas are imple-
mented on a mobile platform equipped with a vision
system (Section 3). Extensions, the relation to other
work, strengths and drawbacks are covered in Sec-
tion 4.
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2. Dynamics of behavior

The theory of dynamical systems as such is, of
course, a field of mathematics. A scientific theory
making use of that field must map problems from the
specific domain of natural or engineering science onto
the mathematical concepts. In this section we sketch
a particular such mapping.

We do this quite simply by lifting ideas from a par-
ticular approach to behavior of nervous systems, which
stresses the concepts of pattern and temporal order
(review [50,47]). This work stands in the tradition of
biological cybernetics (see [37] forreview; [46] fora
comparison) and ecological psychology [ 60], and has
ties to developmental psychology [58], neurobiology
[16] and perception | 25]. Specifically, three ideas are
borrowed from there: (1) It is useful to measure the
activity of behaving systems through variables which
adequately express those aspects of behavior that are
invariant under certain changes of environmental con-
ditions (pattern variables). (2) Behavior can be con-
ceived of as resulting from a dynamical system that the
nervous system is able to establish. This means, that
the nervous system not only generates particular indi-
vidual time courses of pattern variables, but also the
neighborhood of those time courses. For instance, the
recovery of a behavior following perturbation can be
conceived of as resulting from the asymptotic stability
of the attractor solutions of an underlying dynamical
system. (3) Sensory (or internal) information affects
the dynamics, not directly the patterns [51]. In addi-
tion, we introduce the concept of neural representation
with topology and strong cooperativity [49,32], which
is related to much current work in neural network the-
ory [1,45]. The goal of this section is to explain the
concepts alluded to here and to show how they can be
used constructively to design behaving systems.

(1) Behavioral variables. The first step towards
designing a behavior is to find variables (possibly
vector-valued) to describe it. In a sense, the variables
define behavioral dimensions, that is, continua along
which the behavior can change. A specific instance of
the behavior then corresponds to a point in this space
of behavioral dimensions. In other words, all variables
have a particular value for any specific instance of be-
havior. We shall call these sorts of variables behav-
ioral variables.

Two examples will be used throughout this section
to illustrate the ideas. First, consider movement of an
autonomous vehicle in the plane. Such movement will
be controlled, so that, for instance, particular target
locations are reached and locations of obstacles are
avoided. To describe the behavior that this movement
represents, we might use the heading direction, ¢, of
the vehicle and its velocity, v, as behavioral variables.
These variables represent the dimensions along which
the movement behavior can vary. At each point in time,
an autonomous robot must provide particular values
for these variables.

As a second example consider a somewhat more
abstract behavior: the same vehicle is to represent its
position in the world based on various types of sensory
information. Remember that we are attempting here
to treat all processes occurring along the stream from
sensing to acting as behaviors, even when this means
stretching the common usage of the term “behavior” a
bit. Along which dimensions can the behavior of esti-
mating one’s position in the plane vary? Quite simply,
along the spatial dimensions of the plane. An adequate
variable is, therefore the vector, Fego = (Xego, Yego) de-
scribing the current estimated ego-position in a world
coordinate system.

Not just any set of variables will do. A specific re-
quirement arises from the need to endow the particular
behavior with tasks, goals, or objectives. It must be
possible to express such tasks as particular values or
sets of values of the variables. More abstractly, tasks
must be expressible as points or sets in the space of
behavioral dimensions spanned by the behavioral vari-
ables. This means, in particular, that the points repre-
senting the tasks must not depend on the current state
of the system, that is, must be independent of the val-
ues the behavioral variables have at the moment.

In the first example objectives are, let us say, to
move toward a target while avoiding to run into ob-
stacles. In terms of the behavioral variable heading di-
rection, ¢, these tasks can be expressed as particular
values: The heading direction, ¥, points toward the
target location from the current vehicle position, and
the heading directions, s, point toward the obstacle
locations from the current vehicle position (top part of
Fig. 1). Note that directions, ¢, i, and oy, are rel-
ative to an allocentric reference direction (in the top
part of Fig. 1 chosen as the direction parallel to the
x-axis of a world coordinate system). Therefore, the
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Fig. 1. The task of moving in the (x, v) plane toward a target while
avoiding obstacles: The choice of behavioral variable illustrated on
top is adequate: Vehicle motion is controlled by heading direction,
@&, relative to a world coordinate axis, here the x-axis. The tasks
are then parametrized as particular values, 1o and ¢qps of heading
direction which are independent of the current heading of the
vehicle. The choice of behavioral variable illustrated on bottom
is compatible with control-theoretic approaches, but not with the
dynamic approach. Here, the deviation, €, of vehicle heading from
the direction toward the target might be directly available from
typical sensor systems. However, other tasks such as avoiding
obstacles at directions, €y are not independent of the current
state of the vehicle: As e changes so does €.

directions toward the target, ¢, and toward the ob-
stacles, ¢fips, are independent of the current heading,
@, of the vehicle. If the behavioral variable had been
chosen as, for instance, the deviation, € = ¢ — g,
from the heading direction toward the target (an obvi-
ous choice from the point of view of control theory),
this would not be true: Now the heading direction,
€obs, toward an obstacle depends on the variable, €!
Therefore, this is not a consistent choice of behavioral
variable.

Consider also the second example from this angle
(Fig. 2): The objective is quite trivially to obtain an
adequate estimate of ego-position, clearly a point in
the space, (Xego, Yego). More precisely, the definition
of this space is relative to some allocentric references
(e.g., a home base and a land mark) and this deter-
mines in which sense ego-position must be estimated
(namely, relative to that reference frame). Sensory
sources of information may come in different formats

dead-reckoned

position circle of positions at

measured distance
from landmark

ray of positions relative
to compass bearing of
landmark

X
reference Xego
h landmark
g:ilgon providing
p reference
direction

Fig. 2. The task of estimating ego-position, (Xego, Yego), rela-
tive to a reference coordinate system (here defined by a home
base and a reference landmark). Three sources of information on
ego-position are indicated: A circle as obtained by measuring dis-
tance from the landmark, a ray obtained by measuring the bearing
of the landmark relative to a compass (which is calibrated in the
reference coordinate system) and a small square representing the
dead-reckoned position with finite uncertainty. All sources of in-
formation can thus be transformed into sets of points in the space
of the behavioral variables (Xego, Yego).

originally. For instance, a landmark detector may pro-
vide a distance from the landmark which defines a cir-
cle in the space of ego-position. Jointly with a com-
pass a direction relative to such a landmark may be ob-
tainable leading to a ray in the space of ego-position.
Dead-reckoning might provide a complete estimate, a
point in ego-position space. When these sources of in-
formation as expressed as sets of points in the space of
the behavioral variable, they are brought into a format
in which they can be integrated.

(2) Behavioral dynamics. The next step is to set up
a dynamical system, the solutions of which generate
behavior in time. The dynamical system is simply an
equation of motion of the behavioral variables. For
instance, for heading direction a dynamical system
defines the rate of change of heading direction, d), as
a function of current heading direction, ¢

é=f() (1)

and solutions, ¢(¢), of this equation represent the on-
going behavior of moving around in the plane. (To
simplify things we shall assume from now on that
the other behavioral variable, velocity, has some fixed,
non-zero value.) In the second example the equation
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of motion is vector-valued:

xego'—'fx(xego,yego) (2)
}-’ego = fy (xegm }'ego) (3)

We use the term behavioral dynamics to refer to these
kinds of differential equations. This form of dynam-
ics is totally unrelated to the mechanical dynamics of
robot systems .

Not just any dynamical system will do, nor are
we interested in just any kind of solution. Two more
specific requirements are: (1) The dynamical system
must be dissipative and have asymptotically stable
fixed points or other limit sets. (2) Behavior must be
generated through attractor solutions, so that the sys-
tem is at all times in an attractor state. To explain these
requirements we first give a few definitions, and then
go through the two examples.

Our use of dynamical systems takes reference pri-
marily to the qualitative theory of dynamical systems.
Numerous excellent textbooks introduce into this area.
We mention [41] at an advanced level and [10] at an
elementary level (for an informal tutorial appealing
to intuition see also [29]). Here we provide only the
most minimal background.

The space of dynamic variables is called phase
space or state space. In the first example, the phase
space is made up of a single dimension, ¢, but in
the second example, it has two dimensions, Xeg and
Yego- Dynamical systems such as Egs. (1) and (2,3)
define a vector at each point in phase space (in the
examples, f(¢) and (fx(xegm Yego) » fy (Xego» Yego) )»
respectively). These vectors determine the direction
and rate in which the system will move from each
point in phase space. The ensemble of these vectors
is called the vector field. We are interested in a par-
ticular type of solution of dynamical systems, called
fixed points, at which the rate of change of the variable
i.s' zero. These are the zeros of the vector field, e.g.,
Prixed point = 0= f(¢fixed poinr)- Such fixed points
are, in other words, constant solutions of the dynam-
ical system. A fixed point is asymptotically stable, if
the system converges in time to the fixed point from
points nearby. An asymptotically stable fixed point

4Indeed, we shall clarify further on that the behavioral dynamics
must always be dissipative, while the mechanical dynamics are
typically considered in the frictionless limit in which they define
conservative (or Hamiltonian) dynamical systems.

4 do/de
T attractor at

/\f Wear

S

} dé/dt

\_/ repellor at

Yobs

.

Fig. 3. Basic concepts of dissipative dynamics: The rate of change,
¢ = dd/dr is plotted as a function of ¢. The points at which
d¢/dt is zero are fixed points of the dynamics. If the rate of
change has negative slope at the fixed point (top) then this fixed
point is an attractor, to which solutions starting nearby relax as
indicated by the arrows. Reversely, if the slope of the rate of
change is positive at the fixed point the fixed point is a repellor.

is an example of an attractor, a term we use mostly
for its intuitive appeal: the asymptotically stable fixed
point “attracts” solutions in its neighborhood in the
course of time. Repellors are fixed points who attract
if time runs backwards. In other words, solutions di-
verge from points in the neighborhood of repellors
(except if started exactly on the fixed point).

These concepts can be generalized to more compli-
cated sets, for example, to periodic solutions, but we
shall not go beyond this simplest case in this paper.
Because all points in an entire neighborhood of a fixed
point attractor converge to the fixed point, the volume
of this neighborhood (or area or length, depending on
dimension) is reduced over time to zero. This shrink-
age of volume of sets of initial points as the solutions
evolve defines the dynamical system as a dissipative
dynamical system. Control-theoretic stability is math-
ematically linked to these concepts of asymptotic sta-
bility and dissipation (and we will sometimes omit the
qualifier “asymptotic” of stability even though this is,
strictly speaking, incorrect usage).

In Fig. 3 these concepts are illustrated in terms of
the first example. The dynamics of heading direction
are shown by plotting the rate of change of heading di-
rection, ¢ = d¢/dt as a function of heading direction,
¢. Intersections of this function with the ¢-axis are
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fixed points. A negative slope of the function d¢b/dt at
the fixed point characterizes an asymptotically stable
fixed point or attractor (top part of the figure). To see
this, consider values slightly to the right of the fixed
point. At these points a negative rate of growth drives
the system back to the fixed point. Analogously, solu-
tions starting to the left of the fixed point increase to-
ward the fixed point. Thus, to make the direction i,
an attractor, the designer needs to erect a vector field
with a zero at Y4, and negative slope there (top of
the figure). The slope of the function, ¢, determines
the rate with which the system relaxes to the attrac-
tor. The steeper this slope, the stronger the restoring
forces and the faster the system relaxes to the attrac-
tor. Because relaxation is exponential in time, it can
be characterized by a time scale, the relaxation time,
Trel, defined as the reciprocal inverse of the slope of
the dynamics at the fixed point:

-1

af (¢)

4)
d"b p=¢ fixed point

Tret = —

If put at a distance, €, from the attractor, the system
reduces this distance by a factor of e = 2.7... within
one relaxation time.

Reversely, a repellor can be constructed at a direc-
tion, ,ps, pointing to an obstacle by erecting a vector
field with a zero there but positive slope (bottom part
of the figure).

Consider now the dynamics with a single attractor at
thar (top diagram in Fig. 3). From initial values in the
neighborhood of the attractor the system has relaxed
to the attractor after a few relaxation times. This head-
ing direction, ¢,-, now determines the robot’s move-
ments. As the robot advances (at constant velocity),
it changes its position relative to the target (top of
Fig. 4). As a result, the direction pointing from the
vehicle toward the target changes: ¥y = s (7). This
change gradually shifts the attractor in the space of
heading direction (bottom diagram of Fig. 4). How-
ever, if the change occurs sufficiently slowly (com-
pared to the inner time scale 7;) then the system can
relax to the new attractor position immediately as this
shift occurs. In this case, the system essentially always
sits in the attractor and moves with the attractor as the
vehicle moves. This is the limit case that we shall be
using to design behavioral dynamics. It can always be
achieved by adequate choice of the time scale, 7rej, Of

_ ./- target
g s

/
‘/’\wtar(tz)

d¢/dt

1ptalr(tz)

/
‘ Year(ty)

Fig. 4. As the vehicle moves in the plane, the direction, ¢, in
which the target lies changes (top) This change shifts the attractor
of the heading direction dynamics (bottom). If this shift occurs
more slowly than the relaxation process of that dynamics, then
the system is at all times in the attractor of the heading direction
dynamics.

the behavioral dynamics (or by driving slowly) 5.

The second example cannot be illustrated so sim-
ply, because now a two dimensional vector field must
be erected. The concepts sketched here generalize to
multiple dimensions. Stability can be decided by lin-
earizing the vector field around the fixed point and
determining the eigenvalues of the Jacobian matrix.
The real parts of these eigenvalues play the role of the
slope above: they must all be negative for asymptotic
stability. The least negative real part represents the di-
rection along which the system relaxes most slowly.
This component dominates the overall relaxation pro-
cess, and relaxation time is thus defined as the inverse
reciprocal of that least negative real part of an eigen-
value.

So far we have only looked at a single task at a
time, defining individual attractors or repellors to im-

51n this limit case the heading direction in the figure should
have immediately relaxed to - and the robot should have moved
straight toward the target rather than on a curved path. On that
straight path, g, would not actually change. To illustrate the
principle we show a curved path, on which this angle changes.
In general, the presence of other contributions to the behavioral
dynamics (such as obstacle avoidance) will lead to curved paths,
because the attractor does then not always coincide exactly with

drar.
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plement such a task. This might still be considered
a mere rewrite of control theory. To go beyond con-
trol we must address how multiple tasks and multi-
ple sources of sensory or internal information can be
integrated. At the same time, this wili pose more se-
riously the problem of how to arrive at mathematical
functional forms for the behavioral dynamics and how
these dynamics are linked to incoming sensory infor-
mation.

The dynamics is build up from individual contribu-
tions, which are added to form the total vector field ® .
Each contribution represents a constraint on the behav-
ior that we are designing. These constraints typically
arise from sensory information, but may also be built-
in as fixed goals, for instance, or fed in from internal
memory representations. Each contribution is charac-
terized in three respects (Fig. 5): (1) Which behavior
is specified by the contribution? (2) How strong is
the contribution? (3) Over which range of the behav-
ioral variables does the contribution exert influence?
We explain these points in detail next.

By choice of the behavioral variables, tasks can be
expressed as points or sets of points in the phase space
of the behavioral dynamics. We now assume that sen-
sory channels or internal representations provide in-
formation about these points. They may completely
specify a particular point or only provide a bound,
that is, an area in phase space. This is, in a sense, the
“contents” of sensory or internal information. A con-
tribution to the behavioral dynamics is now designed
such, that if it were the only contribution to the be-
havioral dynamics it would erect an attractor at the
specified point (for information about to-be-achieved
behavioral states) or erect a repellor there (for infor-
mation about to-be-avoided behavioral states). If sen-
sory or internal information provides only a bound on
the desired regions of the behavioral phase space, then
the contribution is defined such that again in isolation
from other contributions it would attract toward the
region in which the to-be-achieved behavior lies and
repel from the region in which it does not lie (and
reversely for information about to-be-avoided behav-

6 At this point additivity at the level of the vector field is no
limitation whatsoever, because there are no constraints on the
functional forms of contributions. Thus, for instance, non-additive
effects can be brought about simply by writing down the non-
additive function as a separate contribution. Here, additivity is a
matter of defining the concept of contribution.

d¢/de specified state

\ |

slope ~ strength

dg/dt region of specified

/\ values
AV

Fig. 5. Concept of a contribution to the behavioral dynamics. Top:
Each contribution is characterized by (a) the state it specifies as
an attractor (shown here) or repellor, (b) the strength of attraction
or repulsion parametrized by the slope of the dynamics at the fixed
point, and (¢) by the range over which attraction or repulsion is
effective. Bottom: If a set of values is specified, the contribution
erects attractive (shown here) or repulsive forces outside the set.
The vector field is zero within the set. An alternative is to proceed
as on top, but with a “default” value selected from within the set
as the specified state. In this case the range must be chosen to
reflect the extension of the specified set.

jors). This can be achieved in various ways: An indi-
vidual representative point within the specified region
may be selected and an attractor or repellor be erected
there. The range of attraction/repulsion must be cho-
sen to adequately reflect the bound provided by the
sensor (see below). Another possibility, more sophis-
ticated, is to erect a set of fixed points in the entire
region specified. These can be made attractive relative
to the neighborhood of the region, but marginally sta-
ble within the set of fixed points. (Marginal stability
means that there are no restoring forces to perturba-
tions that put the system into another fixed point.).
Fig. 5 illustrates a contribution that erects a single at-
tractor (top) and one that makes an entire region at-
tractive (bottom). In either case, sensor readings are
continuously fed into the behavioral dynamics as those
parameters, that fix where the attractors or repellors
come to lie.

How strongly the specified behavioral state is sta-
bilized by a contribution is best characterized through
the time scale, 7y, generated by the contribution alone



220 G. Schiner et al./Robotics and Autonomous Systems 16 (1995) 213-245

dx/dt
superposition averages

X2

X1

Fig. 6. When linear contributions to a behavioral dynamics (thin
lines) are superposed (bold line) the attractor lies at a position
that is the average of the attractors specified by the individual
contributions.

(that is, in the absence of other contributions). For an
attractor this is the relaxation time discussed earlier.
For a repellor, an analogous time scale can be defined
as a reciprocal escape rate. The shorter these times,
the more strongly attractive or repulsive the specified
state. For a single variable, this strength of attraction
or repulsion can be visualized by the slope of the dy-
namics at the fixed point (top of Fig. 5): The steeper
the vector field at the fixed point, the stronger the
corresponding contribution. Other than contributing to
the overall time scale of the behavioral dynamics, the
concept of strength of a contribution is crucial to de-
termine how multiple contributions interact. We return
to this below.

The need to address the range over which contribu-
tions extend arises primarily as a question of how var-
ious contributions interact. For a single contribution
an infinite range does not cause any particular prob-
lem. If more than one contribution are present, how-
ever, infinite range always leads to interaction. We use
our second example to illustrate the problem (Fig. 6):
Consider two contributions erecting attractors at two
estimates, x; and x;, respectively, of ego-position x
(we use only the x-coordinate for this illustration). In
the figure the contributions are taken as linear func-
tions, intersecting at the specified points, x; and xj,
with negative and equal slope. The linear functional
form implies an infinite range. Superposition of these
two contributions gives rise to a (steeper) linear func-
tion, which now intersects at the arithmetic mean of
x; and x,. (Had we chosen different strengths, then
the attractor of the complete dynamics would lie at a
correspondingly weighted mean.) Thus, the two con-
tributions always “interact” by averaging irrespective
of the distance between the two estimates, x; and x,.

Endowing the contributions with a finite range (see

dx/dt Y}  range
™ function

X
linear \ complete
attracting > contribution
function Y

dx/dt

averaged attractor

dx/dt
) separate attractors

/\/ \/

Fig. 7. The dynamics of ego-position estimation (x-component
only). When for each contribution a linear dynamics is multiplied
with a range-limiting function (top), the superposed dynamics can
either perform averaging (middle: the two contributions are dashed
and dash-doted, the superposition is the solid line) or maintain
separate attractors (bottom) depending on the distance between
the specified states of the individual contributions.

top of Fig. 7) allows us to modulate the way the
two contributions interact (middle and bottom part of
Fig. 7). At small distances between the estimates, the
superposed contributions lead to a single, averaged at-
tractor (middle part of the figure), while at large dis-
tances, the contributions lead to two separate attractors
at the two specified locations. In other words, the range
of contributions in phase space determines the amount
of overlap between pieces of information that will lead
to averaging or fusion of the information. More gen-
erally, task demands are implemented independently
when they overlap less than the ranges of the corre-
sponding contributions, and are implemented as aver-
aged task demands when they overlap more than the
ranges of the corresponding contributions. Note that
limiting the range of contributions necessarily leads to
non-linear dynamics!

Based on these three criteria, the functional form
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of contributions to a behavioral dynamics can be con-
structed as follows: (1) Determine the point or re-
gion in phase space that is specified by the particular
source of information. (2) Write down a linear func-
tion whose zero is located at the specified point in
phase space. For a region, linear functions depart from
the boundaries of the region. In more than one dimen-
sion, a linear function can be applied in each direc-
tion independently (diagonal form of the dynamics)
or polar coordinates can be used. (3) The slope of the
linear functions is chosen negative for to-be-achieved
states and positive for to-be-avoided states. The ab-
solute value of the slope is chosen based on consid-
erations of time scale and of relative dominance of
contributions, the more dominant contributions hav-
ing larger absolute value. This factor can be tuned to
represent confidence in a particular source of sensory
information. (4) These linear functions are multiplied
with a range-limiting function. A gaussian profile cen-
tered on the specified point with amplitude equals 1 is
best suited, because it does not change the slope of the
resultant dynamics from that of the linear function. In
actual applications (see Section 3) it is often better to
cut the long tail of such gaussian range functions by
a sharper threshold function in order to avoid the in-
terference of these tails with other contributions. (5)
The contributions are added to obtain the behavioral
dynamics.

Although the logic behind these steps is general,
the concrete functional form should be adjusted to the
needs of the problem at hand. For instance, in the
first example we may design the dynamic contribu-
tions for obstacle avoidance using sine-functions in-
stead of linear functions so as to automatically ful-
fill the periodicity requirements of the dynamics of
heading direction (that is, the requirement that the dy-
namics is the same again after the robot has made a
full 360-degrees turn). Fig. 8 illustrates how this con-
tribution can be constructed, for instance, as fops =
sin(¢ — obs) expl—(1 — cos(¢ — thovs)) /20*] (in
Section 3 we use a slightly more sophisticated version,
however).

Fig. 9 shows how the interplay between two such
contributions leads to flexible behavior. In a sense, the
system becomes able to make a decision of whether to
drive through between two obstacles or whether to go
around. What is varied from top to bottom, is the an-
gular distance between the directions in which the two

range function

d¢/dt

repellor
“'\..-": \ at ¢0bS
resultant repelling
contribution sinus function

Fig. 8. The obstacle contribution to the heading direction dynamics:
A — sin-function (dashed) intersecting at ¥qhs With positive slope
is multiplied with a range-limiting function (dash-dotted) to obtain
the complete contribution (solid) of finite range.

} do/dt

¢
single
repellor

separate
repellors

)\[\1 ¢
Fig. 9. Decision making in the heading direction dynamics: From
fop to bottom the distance between two directions in which ob-
stacles are detected increases. The two individual contributions
(dashed and dashed-dotted lines) overlap to generate (solid line)
a joint repellor at small distances (top), but then near a bifurca-
tion (middle and bottom) the repellor splits into an attractor and
two separate repellors. The case on top corresponds to a decision
of the vehicle to circumnavigate the two obstacles, while in the

other examples passing in-between the two obstacles is a possible
(but not the only) solution.




222 G. Schéner et al./Robotics and Autonomous Systems 16 (1995) 213-245

obstacles are seen. When that distance is sufficiently
small (top part of figure), the contributions overlap
strongly and a single repellor is erected at an averaged
direction. The range of repulsion is adequately broad.
At a critical distance between the repellors, a bifurca-
tion or instability occurs (middle part of figure). The
repellor splits into two repellors and an attractor in
between. At this point, the system can begin to drive
through, although the range of initial heading direc-
tions from which this choice will be made is small
(attractor has a small basin of attraction). At larger
separation, the solution that allows passage between
the obstacles becomes quite attractive (bottom part of
figure).

Another way to visualize what happens here is to
look at a bifurcation diagram (Fig. 10, top). The po-
sitions of attractors and repellors are plotted as a func-
tion of an external parameter that brings about a de-
cision. Here, the angular distance, diqps, between the
directions in which two obstacles are sensed is such
a parameter. At small distances, a single repellor pre-
vails from the overlapping obstacle contributions. At
a critical value of Ay the repellor splits into two re-
pellors and an attractor. This is a so-called subcritical
pitchfork bifurcation (the name alluding to the graph-
ical appearance of the bifurcation diagram). At such a
bifurcation, the repellors and attractors that collide go
through an instability, that is, one of the eigenvalues
of the linearized dynamics has zero real part, corre-
sponding to infinite relaxation time.

Instabilities can be analyzed analytically or, more
often, numerically. The fixed points and their eigen-
values can be determined as parameters are varied.
The zeros of an eigenvalue (of its real part to be pre-
cise) are the bifurcations points. Parameters of the
dynamics determining the range of contributions can
then be adjusted to make a bifurcation appear at an
adequate point. For instance, in this example the de-
signer may want to adjust the range functions such that
the pitchfork bifurcation occurs at that angular separa-
tion between two obstacles, at which the vehicle will
just fit physically in-between the two obstacles (this
value will have to be distance dependent). This is how
we adjusted parameters in our implementations (Sec-
tion 3). In practice, a complete analysis is not always
necessary. It is often sufficient to obtain information
about the layout of attractors and repellors at just a
few settings of sensory input.
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Fig. 10. Bifurcation diagrams: Fixed points are plotted as functions
of external parameters. Solid lines indicate attractors, dashed lines
indicate repellors. Top: Subcritical pitchfork bifurcation as it occurs
in Fig. 9 as a function of the angular distance, 4¢ys, between
two detected obstacles. Middle: Supercritical pitchfork bifurcation
as it occurs in the sensory fusion dynamics sketched in Fig. 7.
Bottom: An alternative bifurcation for this dynamics is the tangent
bifurcation occurring here in the upper part of the figure. An
attractor and a repelior collide and annihilate as the relative strength
of two contributions is varied. A remote attractor is unaffected.
The corresponding dynamics are illustrated in Fig. 11.

One can use this form of bifurcation analysis more
radically to design a system around particular bifurca-
tions. For instance, in the second example, the decision
to average two estimates of ego-position or to base the
representation of ego-position on only one estimate,
comes about by a very similar bifurcation (see Fig. 7
for the dynamics and the middle part of Fig. 10 for
the bifurcation diagram). This is essentially the same
as the pitchfork obtained for obstacle avoidance, but
now with attractors and repellors interchanged (a so-
called supercritical pitchfork bifurcation). This bifur-
cation leads to bistable behavior when the two sources
of information are not fused. Which state is realized
then depends on the previous history of the system. It
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Fig. 11. Tangent bifurcation in the dynamics of ego-position esti-
mation: From top to bottom the relative weight of two contribu-
tions (dashed and dash-dotted lines) is varied. When both contri-
butions are equally strong (top) the system is bistable. As the left
contribution loses strength, the corresponding attractor becomes
unstable until it collides with a repellor and at that point is tan-
gent to the ¢-axis. The attractor corresponding to the left entry
has disappeared after the strength of that contribution has been
further reduced (bottom).

will tend to stick with a previous representation un-
til the attractor corresponding to that information be-
comes unstable (so-called hysteresis behavior). This
might be the desired behavior under circumstances
where no rational choice between the two sources of
information can be made. Under other circumstances,
however, the designer may wish to eliminate one of
the attractors entirely, for instance, because the quality
of pertinent sensory information is lower for one than
for the other attractor. This alternative can be realized
through a tangent bifurcation illustrated on bottom of
Fig. 10. In the tangent bifurcation an attractor collides
with a repellor at a particular parameter value leaving
no trace beyond the bifurcation point. Other attractors
may continue to exist unaffectedly. In Fig. 11 we illus-
trate how a tangent bifurcation can be brought about
in the dynamical system of an ego-position estimation

system. In this case, two contributions specify attrac-
tors at a constant distance from each other. What is
varied in the series from top to bottom is the relative
strength of these two contributions. As the left-most
attractor becomes less stable, the overlap with the dy-
namic contribution on the right pushes repellor and
attractor to each other. The two collide in the middle
frame and have vanished on bottom. An application
of these ideas to sensory fusion for the representation
of home position can be found in [39].

Other bifurcation types, such as the transcritical or
the Hopf bifurcation can be similarly employed where
adequate. In the style sketched above, bifurcation the-
ory, which provides a classification of local bifurca-
tions and the local functional forms that robustly gen-
erate these bifurcations, can be used to design the be-
havioral dynamics.

Other than these practical implications this linkage
of bifurcations with decision making offers an opera-
tional definition of flexibility in autonomous systems.
Flexibility occurs if gradual change of sensory in-
formation can lead to qualitative change of behavior.
Qualitative change can now be defined quite literally
in the sense of the qualitative theory of dynamical sys-
tems as change during which the number, nature or
stability of attractors and repellors is changed 7.

(3) Neural field dynamics. There is a fundamental
limitation of the concepts we have developed so far.
Dynamical systems have a unique state at all times.
They can change state by continuously moving in state
space. This is quite adequate for the control of an ef-
fector system, which physically has these same two
properties. But how about representations of informa-
tion? Our example of representation of ego-position
illustrates this. The dynamical systems formulation
we gave forces a unique ego-position estimate at all
times, which will evolve continuously in time (al-
though change can be rather quick near a bifurca-
tion). This may be fine for ego-position where one
would want to force an estimate even in the absence
of sufficient information. But how about using these
ideas to estimate, for instance, the optic flow field or

7The more general formulation of qualitative change involves
change of the ensemble of solutions of a dynamical system that is
not topologically invariant. Thus the ensemble of solutions before
a bifurcation cannot be continuously deformed into the ensemble
of solutions following a bifurcation.
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for representing the locations of obstructions in the
path of the vehicle. There might be conditions under
which one might want to proceed in a similar fashion,
for instance, if an estimate of optic flow has already
been obtained and is to be updated continuously in
time. However, more generally the assumption about a
unique state of the dynamical system makes no sense.
For instance, the number of detectable obstructions
may vary. Even if we assign a new variable to each
detected obstruction, we could not possibly maintain
temporal continuity because we would not be able to
assign new incoming sensory information to the cor-
rect variable (without solving at the same time a big
computational problem, the matching problem).

More generally, this problem arises as we try to ad-
dress processes such as memory, planning, or the rep-
resentation of sensory information. Can the concepts
of dynamics be carried over into the domain of these
processes? We ask this for two reasons: First, as we
stated at the outset, a unified language for all levels of
an autonomous system is an important prerequisite to
providing integrative architectures for such systems.
Second, some of the properties of dynamics may actu-
ally be very useful within such processes, essentially to
provide these processes with well-defined time scales
and stability properties, so that their behavior relative
to time-varying information can be designed.

The new ingredient needed is the principle of neu-
ral representation. The idea is to introduce an addi-
tional “auxiliary” variable, which we shall call activa-
tion (the analogy being with neural excitation). The
behavioral variables are now not by themselves dy-
namic, but instead serve as indices of a field of ac-
tivation variables. In other words, with each value of
the behavioral variable is associated an activation vari-
able. The activation “represents” that value of the be-
havioral variable. Strong activation indicates the pres-
ence of the represented value (presence in the input or
in the output, depending on what the function of the
behavioral variable is). Weak activation indicates the
absence of the represented value. This is the form in
which information is represented in higher parts of the
nervous system according to a common hypothesis.
In neuroscience, this principle is referred to as space
code (or, historically, as the principle of equivalent
nervous energy). Thus, the term neural representation
seems adequate, even though the analogy with neuro-
physiology is at a rather formal and abstract level.

Three ideas are needed to make the principle of
neural representation compatible with the concepts of
dynamics: (1) topology; (2) neural dynamics; (3)
self-generation of activation.

A topological neural representation is one in which
activation variables have well-defined neighborhood
relationships. Here we consider topologies induced by
the space that is represented, that is, induced by the
behavioral variables. Because these variables are con-
tinuous in nature, they define a natural topology. Con-
sider, for instance, the neural representation of head-
ing direction, ¢, in the first example. A neural acti-
vation, u, is defined for every value of heading direc-
tion, so that we obtain a function, u(¢). In order to
obtain the dynamic properties of the neural represen-
tation (see below) the function must be continuous in
¢. Therefore, the representation of a particular value
of heading direction is a localized distribution of ac-
tivation with peaks at the specified value (Fig. 12).
Such a localized peak of activation is an “instance” of
the behavioral dimension heading direction.

The second idea is to generate the neural activa-
tion itself from a dynamical system. In other words,
the neural activation u(¢) is a function of time, and
evolves continuously in time as determined by a vec-
tor field:

u(p,t) = flu] (3)

This makes the function u(¢) a field, u(¢, t), in the
sense of mathematical physics (that is, continuously
many dynamical variables with a topology in the in-
dex set, like, for instance, the electric field). If the
behavioral variables are sampled discretely we have
again a vector-valued ordinary dynamical system. But
because the sampling interval is not supposed to mat-
ter, this is not conceptually different. For simplicity
we use the term neural fields even when sampling is
discrete. The brackets in the equation for the neural
field dynamics indicate that the vector field at the point
u(¢,t) may depend on the values of the field at all
other points u(¢’, ).

Can we define contributions to the neural field dy-
namics analogously to how we set up contributions
to the behavioral dynamics? The ideas are really the
same: Each contribution is additive input to the neu-
ral dynamics®. The contribution is parametrized in

8 Here again additivity is not a constraint because the functional
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Fig. 12. The concept of a neural field: An activation field, u(x),
is defined over a behavioral variable, x. (a) An instance of the
behavior is a localized peak of activation, centered on the value
of x, which this instance represents. (b) Homogeneous states of
activation do not specify any behavior. This limit case, in which
there is no instance of the behavioral variable, x, cannot be dealt
with in the direct approach to behavioral dynamics, where the
behavioral variable, x, is itself governed by a dynamical system.
(¢) Likewise, multiple instances in the form of multiple localized
peaks of activation can exist in the neural field, but not in a direct
behavioral dynamics of x. (d) Through strong cooperativity the
limit case can be achieved in which peaks move within the neural
field as input changes. In this case the neural field emulates a direct
behavioral dynamics. If a single peak exists at all times and moves
continuously within the field, we speak of a uniquely instantiated
system, for which an equivalent direct behavioral dynamics of x
can be found.

three ways: (1) Input is local, that is, it is non-zero
only in a local region of the space of the behavioral
variables. The contents of the input information, that
is, which behavior it specifies, determines where the
input function is localized. Input may be excitatory
(that is, acting towards increasing neural activation)
in which case input specifies the values at which it is

form of the input can represent multiplicative interactions by copy-
ing the adequate terms.

excitatory input inhibitory input

PRI |
range

Fig. 13. Contributions to a neural field dynamics can be excitatory
or inhibitory. Each contribution is characterized by the location
in the field that it specifies, by its strength and by its range. The
neural ficld activation that results (solid line in bottom plot) is
not the mere summation of inputs (dashed lines in bottom plot).
Strong cooperativity makes the field dynamics very non-linear. As
a result, the field may average, but also may make decisions, fuse,
create new peaks, delete old peaks, and so on. The same type of
analysis as developed for behavioral dynamics can be applied to
neural field dynamics.

localized. Or input may be inhibitory (that is, acting
towards decreasing neural activation) in which case
input specifies the complement of the values at which
it is specified. An example of the first is input to the
heading directing field from target detectors (Fig. 13).
Input from obstacle detectors is inhibitory and local-
ized at the directions in which obstacles are seen. (2)
Input functions have a strength, now simply defined as
their amplitude. The strength affects how information
is integrated with other inputs. (3) Inputs functions
have a range, here simply the area in the neural field
that receives input from a particular source. Again, the
same arguments apply as in the earlier discussion on
behavioral dynamics.

The third issue involves interactions within the neu-
ral field. One angle from which to approach this is by
asking how we might recover within the framework of
neural field dynamics the case in which a unique state
of the behavioral variables exists at all times and that
state changes continuously in time. In other words,
how can be obtain the limit case of the behavioral dy-
namics from this more general picture? This means
that the neural field must be able to maintain a local-
ized peak of excitation even in the absence of input
information! Thus, the peak must be self-generated by
intra-field interactions.

There are actually few mathematical model systems
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that contain this limit case (see Ref. [36] for a sur-
vey). We are sometimes using a set of equations first
analyzed by Amari [1] as a model of cortical excita-
tion. In the context of the first example it would read

Tu(p,t) = —u(p,t) (6)
+/w(¢ — ¢)YOu($ 1)) dd + b+ S(e,1)

wherein 7 determines the time scale of the system, w
is an interaction kernel typically of mexican-hat form,
@ is a sigmoid threshold function, 4 a constant deter-
mining the overall amount of inhibition or excitation
in the system and S represents the potential inputs to
this system. In the language of neural modeling, the
interaction kernel generates cooperativity. Under cer-
tain conditions, only a single peak can be present in
the system at any time for any input, because the in-
teraction kernel globally inhibits the rest of the field.
At other settings of overall inhibition, h, it is possi-
ble, however, to have multiple peaks, which can be
induced or deleted by input information (Fig. 12).

In the limit case of global inhibition Amari showed
that the self-generated peak, which persists in the ab-
sence of input, can be moved around in the field by
applying different inputs. If, for instance, no input is
present initially, but the peak is present and positioned
somewhere, and now an input is applied nearby, then
the peak moves continuously from its previous posi-
tion to a position in which it is centered on the input
excitation (see bottom diagram in Fig. 12). Amari
provided an equation of motion of this movement of
the peak, which could be viewed as the direct deriva-
tion of the behavioral dynamics from a neural field
dynamics in this limit case of global inhibition. Is it
useful to work in this way? Not normally. Clearly, the
computational effort of solving an integro-differential
equation of the type of Eq. (6) is much larger than that
of simply integrating a one-variable differential equa-
tion of the type of Eq. (1). However, having estab-
lished this linkage is important in two respects: First,
it shows that the neural field dynamic language is ac-
tually more general than the behavioral dynamics lan-
guage. Second, reversely, it guides us in transferring
the concepts of behavioral dynamics to the domain of
neural field dynamics: Specification by stabilization,
decision making by bifurcations, etc. A discussion of
these methods can be found in [22].

We introduce one additional example to illustrate
what happens when we apply the neural field ideas to
cases that do not correspond to this limit case of be-
havioral dynamics. Assume that some sensory infor-
mation provides information about the location of ob-
stacles in the robot’s environment. Using ego-position
estimation this information can be represented in an
allocentric coordinate system. The task is now to rep-
resent such obstacle information in memory in a neu-
ral field. This problem has been solved in [22] and
a report on the implementation of this method on a
vision-based autonomous vehicle is given in the next
Section . Processes that must be addressed are: the
creation of entries in memory, the deletion of entries,
the merging or splitting of entries, and the mainte-
nance of entries in the absence of sensory informa-
tion. The solution has these ingredients: (a) A neu-
ral field, u(xobs, Yobs) represents obstacle locations in
the world. The field is operated in the bistable regime
where in the absence of input both localized peaks and
the homogeneous solution without any localized ac-
tivation can stably persist. (b) Input information on
obstacle locations currently in view excites the neu-
ral field where an obstacle is detected and inhibits the
neural field where an obstacle is not detected. This
leads to the creation of localized peaks at those loca-
tions in the field at which no peak existed before but
an obstacle is now being detected, and to the deletion
of pre-existing peaks where no obstacles are detected
anymore. Moreover, if the same area in the world had
been seen earlier, and localized activation profiles rep-
resented the obstacles at that earlier time, the current
sensory information recalibrates these peaks by mov-
ing the peaks to the locations at which obstacles are
currently being detected. (c) Parts of the neural field
which are not currently in the viewing range of the
sensors receive no input and hence peaks and homo-
geneous parts of the field remain stable.

3. Applications

The two applications that are reviewed here both
use target acquisition and obstacle avoidance in au-
tonomous vehicles moving over flat ground as the ba-
sic reference problem. Because for autonomous vehi-
cles these are the most frequently implemented ele-
mentary behaviors, they can serve as reference points
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from which to assess different approaches. In both
cases we solve the basic problem of generating ade-
quate movement based on local sensory information
through an attractor dynamics for heading direction.
We implement two different, although related, func-
tionalities at a slightly higher level. In the first exam-
ple (Section 3.1), we show how non-segmented sen-
sor readings (about detected potential obstacle loca-
tions) that overlap to varying degrees can be integrated
through a dynamic neural field. In the second exam-
ple, we show how the same type of sensory informa-
tion can be represented to provide the functionality of
memory for obstacles, that is, to provide the capabil-
ity to use such information after it has stopped being
available at the sensors. Memory is subsymbolic and
dynamic through the use of a dynamic neural field.

In both cases we are using the same hardware [18]
that we refer to as MARVIN (Mobile Active Robot
Vehicle for Intelligent Navigation). A commercial
robot platform (Robosoft) is equipped with its own,
on-board computer system (operating system ALBA-
TROS). A custom-made active stereo-camera system
[52] is mounted on the vehicle jointly with an OS9
computer responsible for image-based focusing and
camera motion control. This computer also controls
the various interfaces. Image acquisition and analy-
sis and the dynamic architecture are implemented on
an off-board UNIX computer (Sun 4/330, for some
tasks interacting with a Sun SPARCstation 10).

We used a vision based obstacle detection algorithm
[57] developed by our colleagues at the Institut fiir
Neuroinformatik in Bochum, which relies on the prin-
ciple of inverse perspective mapping [35]. The idea is
simply to project the images of the two stereo cameras
onto the planar surface in which the vehicle moves,
which is possible if the camera geometry has been cal-
ibrated. Taking the difference between the two images
removes all intensity originating from visual structure
within the driving surface, because that intensity is
identical in left and right view. The remaining inten-
sity comes from visual structure elevated above the
driving surface. Any such structure is considered an
obstacle. This is a very low-level algorithm, that pro-
vides only crude and distorted information about the
3D surface structure giving rise to the image pairs. For
instance, a stereo shadow results from the difference
in perspective distortion between the two views. This
leads to systematic overestimation of obstacle-covered

ground over the true footprint of any obstacles.

The obstacle information obtained in this manner
is a cloud of points in the driving surface, not seg-
mented and fluctuating from frame to frame. Both dy-
namic robot architectures integrate this information
ultimately in the sense of driving successfully through
the terrain without collision. More specifically, dy-
namic neural representations are generated that reduce
the cloud of sensed points to non-cluttered represen-
tations within which the vehicle can successfully nav-
igate (see Figs. 16, 18, 19).

3.1. Multisensory integration in a simple obstacle
avoidance module

There are two layers of behavioral dynamics in this
module (for more details see Ref. [17,19]). Path gen-
eration and control is provided by a dynamics of head-
ing direction, ¢, with contributions representing ob-
stacle and target information. Obstacle information is
provided through a neural field dynamics which per-
forms multi-sensory integration.

We use heading direction, ¢(¢), in the world as the
behavioral variable, because the tasks of target acquisi-
tion and obstacle avoidance can be expressed as points
in heading direction space and thus heading direction
can be made an attractor at all times during motion (as
discussed earlier, Section 1). This is heading direction
in the world, that is, relative to a world-fixed coordi-
nate axis! The behavioral dynamics is easily designed
in this coordinate systems which is why we use it even
though orientation in the world is not easily obtained
from sensor readings. Actually, only differences be-
tween such directions matter. These differences cor-
respond exactly to the measurable directions in which
obstacles are seen from the vehicle-fixed view axis.
Using constant tangential velocity, v, the robot path
is generated by integrating x = vcos¢(¢) and y =
vsin@(z) where x and y denote the position in world
coordinates. We mention these details to illustrate that
the concept of “macroscopic” behavior-related vari-
ables does not imply that such variables cannot be di-
rectly constructed and computed on a given piece of
hardware. In the actual implementation all dynamical
equations are solved numerically, of course. Discrete
increments of position and desired heading direction
are computed over a series of steps and then executed
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by the robot command language ° .
The time series of heading directions is generated
by a behavioral dynamics

¢ = Far(#) + Y _ Funs(#) + noise (7)

obs

which consists of one contribution representing target
acquisition, a sum of contributions representing ob-
stacle avoidance and a gaussian white noise term to
ensure escape from unstable fixed points. The target
acquisition term

Fioe () = —asin(¢ — o) (8)

erects an attractor (in the absence of other contribu-
tions) at the direction, ,, in which the target lies
from the vehicle (taken relative to a fixed world coor-
dinate orientation). The attractive effect is to extend
over the entire range of heading directions. The func-
tional form is dictated by the periodicity requirement
for dynamics of angular variables. We have not im-
plemented a sensory module that provides target in-
formation, ¢,. Instead, this part is generated by rep-
resenting a target in world coordinates and updating
ego-position in that world coordinate system through
dead-reckoning.

Obstacle information is, by contrast, obtained from
the vision module, the inverse perspective mapper.
This module delivers a set of points on the driving
surface, in vehicle centered coordinates, at which ob-
stacles are detected. Each point is transformed into
a polar coordinate system whose orientation is fixed
in the world. This orientation is maintained by dead-
reckoning heading direction. Thus, input information
consists of directions, s, relative to this world co-
ordinate orientation, and distances, dgps, Of points at
which the driving surface may be obstructed. In the
implementation, this information is obtained from a
discretely sampled grid (after several transformations
a reflection of the resolution of the video images).
The sampling interval on this grid is interpreted as the
potential “size” of each obstacle entry.

For the dynamics of heading direction each ob-
stacle contribution erects a repellor at the direction,
Wobs. The functional form of this contribution has been

9 For technical reasons a clothoid method [28] is employed
at an intermediate stage to generate an adequate sequence of
interpolating robot commands.

elaborated to deal with finite sizes of obstacles, with
distance bias (points close to the vehicle repel more
strongly) and assigns a range over which the contribu-
tion acts (determined by adjusting the point at which
the repellors of two obstacle contributions merge into
a single repellor, see below):

Fops = Repel (@) Range i, Range,,, (#) 9
with
Repel(¢) = (¢ — thovs) /A

x exp [1— | — thoval /2] (10
Rangeg, iz = exp |~ Fobe — Kot = Rrobor |11

dy

Range,uy (9) = 5 [1anh (i (c05(6 — o)
—cos(24¢ + 6))) +1]. (12)

Here Ay is the angular size of the obstacle, rops is
the distance of the obstacle from the vehicle, Ry and
Riobor are obstacle and robot radial size, respectively,
and hy, dy, and 6 = 0.8 are model parameters.

The idea here is to look from the vehicle toward
the point at which an obstacle has been detected and
then imagine copies of the vehicle placed to the left
and to the right of that point. The viewing angle, 4,
subtended by this ensemble is the angular range over
which the repelling influence is to extend. Thus points
nearby will cover a vastly larger angular range than
points further away from the vehicle even at constant
size of the obstacle element.

Simulation work [48] has demonstrated that this
dynamics works as intended, including in situations
with dynamic obstacles. Fig. 14 illustrates the basic
decision making mechanism in such a simulation. The
parameters of the model are calibrated by requiring
that the decision not to pass between two obstacles
occurs at the adequate spatial distance between the
obstacles taking into account vehicle size and safety
margins. That critical point is defined as a bifurcation
and can be determined by numerical inspection of the
dynamics (Fig. 14, bottom) rather than only through
trial and error.

Problems arise with this direct approach in clut-
tered environments such as those defined by the clouds
of points coming from the inverse perspective algo-
rithm. To achieve sufficient maneuverability, obstacle
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Fig. 14. Calibration of the obstacle avoidance contributions in the first implementation: The minimal integration task involves only two
obstacles (small circles on top), the distance between which serves to calibrate the dynamics. When this distance is larger than the vehicle
size (large circle on top), passing between the obstacles must be possible (left column). When this distance is smaller than vehicle size
(plus some safety margin) then passing must be impossible (right column). The two contributions to the heading direction dynamics
(dashed lines in bottom diagrams) are summed (solid lines) and the attractor structure of this sum is examined. For larger than critical
distances two repellors are separated by an attractor, for smaller than critical distances a single repellor remains. The parameters of the
contributions are tuned such that the bifurcation between these two cases occurs at the distances, at which the vehicle just fits in between

the obstacles.

information must be relatively densely sampled. Be-
cause each pixel at which obstacle information is de-
tected can lead to a substantial range of heading di-
rections which must be avoided (due to vehicle size
and safety margins), the information from the sample
sites strongly overlaps when expressed in terms of the
contributions to the heading direction dynamics. As a
result, directions with multiple detection events may
then overpower the contributions of less densely de-

tected signals. Because any repellor function generates
an attraction at its boundaries, this leads to spurious
attractors that can induce collisions. In potential field
approaches this is the well-known spurious minima
problem, which occurs generally in additive vector-
field approaches (see Ref. [ 15] for a discussion). The
problem is illustrated in a simulation in Fig. 15.

This problem is solved by introducing a new level
of behavioral dynamics at which integrated obstacle
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Fig. 15. Spurious attractor problem: Dense or cluttered input which
strongly overlaps may lead to spurious attractors. On top, we as-
sume that at two clusters of points obstacles are detected (cir-
cles). In addition, a single isolated obstacle is detected (circle in
the middle) which blocks the path toward the goal. The dynamic
contributions of the two clusters create an attractor for heading
between the two clusters, because the top cluster pushes heading
to the right, the left cluster pushes heading to the left and the dis-
tance between the clusters is sufficiently large to allow passage.
The attractor is so strong, that the single repulsive force contri-
bution of the isolated obstacle does not destabilize it. This leads
to collision. This simulated situation represents a constructed ex-
tremal case of course. In practice, even without a neural field the
occurrence of spurious attractors can be minimized by preprocess-
ing obstacle information. In terms of the dynamic approach, the
problem is due to the non-local nature of the relevant bifurcation,
in which multiple contributions at finite distances from each other
matter.

information is represented. The idea is to use a dy-
namic neural representation that transforms incoming
sensory information into a form suitable for path gen-
eration. Clusters of detected obstacle information are
represented by selected neurons such that when this
representation is coupled into the heading direction
dynamics then locally the dynamics is similar to the
case with two obstacles for which the system has been
calibrated (Fig. 14). If this can be achieved, then the
calibration based on this elementary situation carries
over into general configurations.

We use a neural field in discrete form which is de-
fined on a grid of space points centered in the vehicle.
The grid thus moves with the vehicle, but remains in
fixed orientation relative to a world coordinate axis
(again the exact orientation does not matter but it is
important that the grid does not turn with changes in
heading direction). This is adequate, because sensory
information is to be integrated locally and irrespective
of where in the world the vehicle has moved.

Sensory information is projected onto the grid
points in two steps. First, the input into the neuronal
dynamics at each grid point is determined by looking
at all sensor readings that overlap with the sampling
radius of the grid site. Because sensor readings are
spatially inhomogeneous (here at least due to the in-
verse perspective, but also, more generally, due to the
structure of the visual world) some grid sites integrate
much more information than others irrespective of
the behavioral relevance of this information. There-
fore, the incoming sensory information is added and
then thresholded to determine the amount of input
excitation. Specifically, input to grid site (i, j) is

AG,j) =tanh(er - [—e3+ Y T((4,)), k)1 (13)

pixels &

where I" represents the degree of geometric overlap
between sensor pixel and grid site. (Sensor pixels de-
fine a small circle centered on the pixel with radius
equal to the sampling interval. Similarly grid sites de-
fine small circles centered on the grid site with ra-
dius equal to the spatial grid sampling interval.) The
hyperbolic tangent serves to threshold and normalize
raw sensory information. This input is next fed into a
competitive activation dynamics

Wi = i, ) (g = sign(ali, ) wi))
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- Z y((i, j), (r,s))wi wi; + noise (14)
(r,8) #(i.))

The competitive strength a of each activity variable,
w;; € [—1,1] is determined both by the strength of
input and by spatial distance, closer grid points being
stronger than more distant grid points:

a(i, j) =(1+c2-exp(—d/da)) - A(i, ]) (15)

The degree to which sites compete is determined by
v((i,j), (r,s)), which decreases as the distance be-
tween grid sites increases.

The workings of this neural dynamics can be illus-
trated with the help of a few limit cases: Sites receiv-
ing no sensory information have negative input func-
tion and hence negative competitive advantage leading
to w;; = 0 as the stable state for those sites. If only
a single site receives input within the spatial range
of competition, the activated state is stable: w;; =
+1. Thus, scattered or isolated input is represented
by single, fully activated sites. When sites within the
range of competition simultaneously receive input one
of two things happens: In the far-field (weak input)
one cell is competitively selected, while in the near-
field (strong input) more than one cell may be ac-
tivated, but with a reduced level of activation (see
Refs. [17,19] for analytical work). This neural dy-
namics differs from typical competitive neural activa-
tion dynamics primarily through its polynomial func-
tional form, which enables detailed analytical work to
determine adequate parameter settings.

Thus the attractor structure of this neural dynam-
ics defines the representation generated at this level.
This representation is fed into the heading direction
dynamics simply by adding repellor contributions of
each grid site, weighted, however, with the level of
activation, |w; ;| at that site:
¢=Fald)+ D |wy|Fi,+ noise (16)

grid sites i,j

where F; ; has the functional form of an obstacle con-
tribution for an obstacle located at grid site (i, j) and
with a size that reflects the grid constant.

The two levels were implemented through a nu-
merical integration module in the robot control ar-
chitecture. Other than generating the movement com-
mands by computing upcoming path pieces, the soft-
ware package developed also permits to monitor the

various dynamics by direct on-line graphical represen-
tation. In this manner, the adequate parametrization of
the dynamics can be checked.

Fig. 16 illustrates how the method works with actual
sensory input. In cluttered regions, the neural repre-
sentation is thinned with a mean distance and strength
that conforms to the required elementary situation tem-
plate. As the vehicle moves, the neural field moves
against stationary obstacles. The activated representa-
tion then propagates within the neural field as the com-
petitive advantages of the different grid sites change.
We have tested this module successfully in numerous
runs in the environment of our robot laboratory.

In this application we have integrated multiple sen-
sor readings coming from the same physical sensor,
here the stereo range of a stereo camera system (and
thus a high-dimensional and inhomogeneous set of
sensory information). Similar ideas can also be ap-
plied across different sources of behaviorally relevant
information. For example, in Ref, [39] the integration
of optic flow-based target information with internally
represented dead-reckoning information is achieved in
a similar manner.

3.2. Dynamic memory in an obstacle avoidance
module

This application aims to demonstrate dynamic
memory of obstacle information in the same overall
task of target acquisition with obstacle avoidance.
Memory augments the narrow viewing range (£27°)
of the stereo camera system and, of course, builds up
a representation of the workspace of the robot over
time. The methodology of neural dynamic fields is
used throughout. Memory is dynamic in the sense
that the memory dynamics support the processes
of segmenting sensor data and creating memorized
instances, as well as updating and deleting such in-
stances, all at a sub-symbolic level of representation.
An overt feature of this form of dynamic memory is
its capability to cope with dynamically changing en-
vironments: whenever sensory information becomes
again available the memorized representation is up-
dated to match changes in the environment.

The dynamic neural field architecture is illustrated
in Fig. 17. The top layer representing goal position in
the world is only simulated. Obstacles are detected in
the sense of the inverse perspective mapping the raw
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Fig. 16. The implementation of the first application on a vision-based autonomous moving platform. (a) The two images of the stereo
camera system (top) are projected onto the driving surface (middle) and subtracted from each other (bottom left). This difference image
is thresholded (bottom right) and in this form serves as input into the neural dynamic field.
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Fig. 16. Continued. (b) The input function field, A, is vehicle
centered and performs resampling at desired resolution (circles
around grid sites) and normalization.

data points of which represent the obstacle layer. The
memory and planning layers are dynamic neural fields,
mathematically of the Amari type [1]. For an expo-
sition of the mathematics of these fields and detailed
simulation work consult [22]. The mathematical for-
mulation is particularly suitable for design because
analytic solutions provided by [1] make it possible
to relate model parameters directly to desired proper-
ties of the solutions. Moreover, the Amari dynamics
is particularly suitable as a uniform mathematical for-
mulation that can, in principle, be used across the en-
tire architecture. Thus, the memory layer exemplifies
the use of an Amari neural field to represent multi-
ply instantiated information while the planning level
exemplifies the limit case in which a unique instance
moves continuously within the field so as to emulate
the functionality of a uniquely instantiated behavioral
dynamics.

The memory field, upmem(x), is defined over the
work space, x = (x;,x2), of the vehicle in world
coordinates. In the implementation, a 10 by 10 meter
area is covered. An Amari dynamics

Tmembmem (X, 1) = —Umem (X, 1) 17

FWmem * @l timem ] (X, 1) — Amem + Sobs (X, 2)
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Fig. 16. Continued. (¢) The neural dynamic field activates repre-
sentatives at the grid sites that win a competitive dynamics (filled
vertical bars) while all other grid sites have zero activity (open
vertical bars) even if they receive input. For illustration the raw
input from the inverse perspective mapping is overlaid in this plot
(black dots). The polygon indicates the stereo viewing range of
the vehicle.

operates in the bistable regime without global inhibi-
tion. This means the following: Consider first the dy-
namics without input from Sobs. The linear relaxation
term, —#mem, the intra-field interaction of the mexican
hat type

bmem >0 for |x} <rien,
Cmem < 0 for %, < |x| < rin (18)
0 else

Wiem (X) =

and the global inhibition constant, Amem, allow for
two types of solutions: homogeneous solutions (¢-
solutions) at low activity and localized solutions (a-
solutions) in which peaks of excitation with width a
are stable and stationary. The number of localized so-
lutions is limited by the size of the system because
peaks keep a minimum distance, which can be deter-
mined analytically. The non-linearity generating this
multistable characteristic is the threshold function, &,
which is chosen as a Heaviside step function (0 for
negative, 1 for positive argument). The asterisk in-
dicates a two-dimensional convolution ( f * g)(x) =

Jd* f(x—x)g(x).
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Fig. 16. Continued. (d) The complete two-level dynamics suc-
cessfully maneuvers the vehicle through an environment to its
target (filled circle). The state of the neural fields shown in parts
(b) and (c) corresponds to the initial position of the vehicle (left
position of the big circle with arrow indicating initial heading
direction) The raw input data obtained at various points during
the drive are marked by black dots for illustration (the locations
in the world at which these data are shown are determined from
vehicle position and sensor data).

This field can be operated as a dynamic memory
in the following manner: Memory items are individ-
val localized peaks, that is, a-solutions, while the ¢-
solutions represents the absence of information. Ex-
citatory (positive) input from the obstacle field, Sops,
creates three types of situations: (1) A transient con-
tribution to input is proportional to the rate of change
of sensory information at each location of the viewing
range. This component induces a new memory peak
if new sensory information arises at a location and
deletes a memory peak if sensory information disap-
pears at a location (e.g., by moving). (2) A stationary
contribution stabilizes the position of memory peaks
at the location specified by current sensory informa-
tion in the viewing range. This contribution also sup-
presses localized peaks at locations within the view-
ing range at which no sensory information is currently
being detected. (3) Areas outside the current viewing
range receive no input, leaving the currently realized
stable state of the memory field invariant.

The nature of this memorized representation of ob-

Environment

Y

Fig. 17. Neural dynamic field architecture of autonomous vehicle
that performs obstacle avoidance and target acquisition with ob-
stacle memory. The target level is only simulated. Obstacles are
represented in vehicle-centered polar coordinates (fixed orienta-
tion in the world) based on input from the visual inverse perspec-
tive mapper. Obstacle memory is a neural dynamic field in world
coordinates, into which the obstacle field couples after adequate
coordinate transformation (hinted at by oblique projection lines).
The memory field couples inhibitorily, the target field excitatorily
into the field in which vehicle motion is planned. This field uses
heading direction and velocity as dimensions, but we left velocity
constant in the actual implementation. Note the broad range of
the target contribution.

stacle information is illustrated in Fig. 18 and in the
right half of Fig. 19. The incoming sensory informa-
tion consists of fluctuating clouds of points in space,
at which obstacles are detected. The neural field erects
a discrete number of peaks that are adequately posi-
tioned to cover these clouds. In this way, the environ-
ment communicated to the path generation dynamics
is cleaned up, so that the elementary decision making
process based on a single bifurcation parameter (dis-
tance between two obstacles) remains applicable. The
memory field thus performs both sensory integration
and creation, updating, storing and deleting of mem-
ory items.

Note that memory is represented in world coordi-
nates. This makes sense because typically obstacles
are expected to be stationary in the world. The sensory
information related to obstacle detection is acquired,
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Fig. 18. Obstacle avoidance with memory: We show data from a real run through an environment with obstacles (sketched as rectangles)
toward a pre-programmed target to the right of the corridor. The obstacles were cardboard boxes and half- height walls. The small, densely
sampled circles indicate detected obstacle information as obtained from the inverse perspective mapping. The information is computed back
into world coordinates based on the robot’s own dead-reckoning. There are four clusters of detected obstacles due to the directions into
which the robot looks as it moves through the parcours. The large circles indicate the subsequent vehicle positions (circle size indicating
approximate vehicle size) with the hair pointing in the current heading direction. The memory field is represented to the right as a gray
scale image. This field is in world coordinates and covers approximately a 10 by 7.5 m area. Thus the scale of the memory field is smaller
in the drawing than the scale of the robot motion. The four points of darker shading are four localized peaks of excitation of the neural
field, each matching one of the clusters of detected obstacles. The peaks are surrounded by white areas, in which the field is inhibited more
than average (gray background) due to the lateral inhibition. Because only thresholded activation is coupled into the heading direction
dynamics, only the darker inner parts of the peaks are significant.

of course, in a coordinate system moving with the ve-
hicle. Thus the coupling of sensory information into
the memory field requires a coordinate transformation
which involves an estimate of the ego-position of the
robot in the world. This estimate is here obtained by
integrating the generated path commands, a form of
dead reckoning (see below). Thus the architecture as
presented in Fig. 17 is not purely feed-forward, even
aside from the obvious cooperativity within the field.
Instead, the memory field forms part of an internal
closed loop.

The path is generated by a dynamics of heading
direction, now implemented as a neural dynamic field,
u(, ). Its dynamics

Tpathupath(‘ba f = —upath(¢s 1)
+Wpath * @grad(upath) (d,t) — hpath
+f‘i;1‘&r[umem’ ut,arget](¢st) (19)

involves global inhibition, that is, in the kernel Wpath
the inhibitory zone extends over the entire angular
range. As a result, the system has a single peak as a
stable stationary state and it is around this solution that
the system operates. Input from the target and mem-

orized obstacle fields is coupled in positively (exci-
tatorily) for targets and negatively (inhibitorily) for
obstacles. These forces position the peak stably at a
heading direction that avoids obstacles and heads to-
ward the target. To avoid pinning effects (in which
numerical imprecision leads to deviations between the
actual and the computed solution) we use a more
rounded threshold function, 4. Here convolution
takes place in one dimension only. A short-cut elim-
inates the numerical problem of computing convolu-
tions at this level completely: Using Amari’s analytic
estimates [ 1] for the movement of a localized solution
under the influence of small inputs we can determine
an equation of motion for the position of the peak

. 1 . 1
Tpam¢(t) = Z[f;[;t;r((b(t) + Ea)

. 1
—foun ($(5) = 5a)1, (20)

where a is the width of the localized peaks. As an ap-
proximation, this equation can be solved rather than
the complete field dynamics Eq. (19). In the imple-
mentation on the robot platform we have used this
short-cut (for simulations of the full system see Ref.
[22].)
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Fig. 19. Obstacle avoidance with and without memory: This figure illustrates the beneficial effect of memory for vision-based navigation
with a narrow viewing angle (£27°). Again data from real runs are used. The top diagrams show the vehicle position at different
time steps (large circles, hair indicating heading direction) jointly with detected obstacle information as provided from the raw inverse
perspective mapping (small circles, this information is transformed back into world coordinates for the illustration). In both cases (left
and right column) the vehicle was surrounded by the same obstacles. The target was to the right of the initial position. On bottom the
obstacle map is shown in world coordinates. The blow-up lines indicate in which part of the world the scene shown on top takes place.
White and gray area shadings indicate subthreshold activation, black areas suprathreshold activation. Note the representation of obstacles
by isolated localized peaks the distance between which is determined by the intra-field interaction such as to remove spurious attractors
from the heading direction dynamics. In the run shown to the left, the memory function was suppressed by eliminating all activation in
the memory field outside the current viewing range. Thus, the ¢bstacle representation is limited to a few items detected within the narrow
viewing range. As a result, the vehicle oscillates, changing course each time obstacle information shifts as the vehicle starts to turn. The
path leads straight to collision with an obstacle. In the run shown to the right, a representation in memory of the obstacles is built up
during the initial oscillations. As this representation is augmented, the vehicle starts to turn consistently under the simultaneous influence
of this richer representation and ultimately finds the exit from this boxed-in situation to the upper right.
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This dynamic architecture was implemented on a
UNIX computer in C++ using classes of the Neural
Simulation Language NSL developed at the University
of Southern California. The program communicates
with the sensor module that performs inverse percep-
tive mapping and with a communications module that
passes commands to the robot via UNIX-BSD sockets.
Heading direction is sampled at 64 orientations and a
32 by 32 grid is used to discretize the memory field.
Based on one acquisition of sensory data the path is
integrated to a path length of 20 cm. The target posi-
tion and orientation are then attained by direct control
of two active vehicle wheels, so that the final path is
a polygon. Unoptimized code leads to performance in
which such a piece of path is computed based on one
set of two acquired images in 1.5 sec (including the
inverse perspective computation) with an additional
1.5 sec used up for communication with the robot.

Fig. 18 illustrates the functioning of the module.
The cluttered incoming sensory information is trans-
formed into a segmented obstacle representation in
memory that locally creates a simplified dynamic field
for the path generation level, similar as in the previous
application. The fact that memorizing obstacle infor-
mation enhances the obstacle avoidance capabilities
of our system is demonstrated in Fig. 19 in which two
runs are compared: On the left, movement, sensory
information and the dynamic memory field are shown
in a situation in which the memory function was ar-
tificially suppressed (by resetting the field anywhere
outside the current viewing range). Oscillations of the
vehicle occur due to the limited viewing range of the
obstacle sensor, and lead the vehicle to collide with
the obstacles head-on (cf. [33] for a discussion of this
problem). With memory (right column) the system
easily manages this situation.

4. Discussion

We have employed concepts from dynamics at two
levels. The notion of behavioral variables, in terms
of which desired and undesired behaviors can be de-
scribed as points or simple sets, allowed us to talk
about behavioral dynamics. The performed behavior
is an attractor of these dynamics and the various con-
tributions to the dynamics are all expressed as terms
generating either attractors (desired behaviors) or re-

pellors (undesired behaviors). The second step was
to introduce dynamics in the form of strongly coop-
erative interactions within neural representations. In
this case, dynamic representations can be generated
that are invariant under some classes of change of
sensory information. For instance, in the first applica-
tion, the dynamic representation of obstacles remains
unchanged when the incoming sensory information
fluctuates or changes systematically as long as these
changes in the input are insufficient to change which
neurons are winning the competition. Due to hystere-
sis, the change required to bring about a switch at the
neuronal level is finite. In the second implementation
the representation of obstacles in a neural field is in-
variant in this sense: The localized peaks representing
entries in memory remain unchanged as sensory infor-
mation moves through the viewing field and ultimately
out of the viewing field as long as this movement is
compatible with the visual movement resuiting from
vehicle motion for an obstacle resting in the world.

There are a number of ways in which the dynamic
approach can and must be extended when applications
are scaled up from the simplest cases discussed here.
We sketch only the most critical issue, the problem of
how to organize multiple layers of behavior with the
help of time scales. Other aspect such as generating
dynamically richer forms of behavior (through limit
cycle attractors, or through switching dynamics, etc.)
are beyond the scope of this paper.

When the methodology of behavioral dynamics is
generalized to multiple layers with multiple behavioral
dynamics, an additional ingredient may be needed to
provide modularity, that is, to ensure that the individ-
ual behaviors can be designed separately. One way to
deal with this is invariance. This was used in our appli-
cations: One layer was simply invariant under changes
in the other layer. In both applications, the represen-
tation of obstacles was in a world coordinate system
(with respect to orientation in the first case and addi-
tionally withrespect to the origin of the coordinate sys-
tem in the second case). As a result, the dynamic rep-
resentation of obstacles was invariant under changes
of heading direction: if we were to rotate the vehi-
cle on the spot, no change in the directions, tqps, Un-
der which the obstacles are represented would result.
Thus, the obstacle representation dynamics could be
designed independently of the heading direction dy-
namics. Reversely, for the heading direction dynamics
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we treated the representation of the obstacles as quasi-
static parameters. This was possible because the ob-
stacle representation had at all times already relaxed
to the state representing adequately the sensory input.
This method cannot always be used, however. A
new method is needed when different layers of behav-
ior specify particular states for each other. Consider
for instance, heading direction as before, but now
augmented with a dynamics of velocity, so that the
movement of the vehicle is controlled completely by
this layer. As a second layer consider a dynamic rep-
resentation of ego-position in the world integrating
various sources of sensory information (in the style
used in the second example throughout Section 2).
Here, the layer generating movement will directly
affect the layer representing ego-position (through
dead-reckoning at least, but also through the changed
sensory information as the vehicle moves in the
world). Conversely, any information taken relative
to ego-position (such as the direction towards home
if home is stored in world coordinates) now brings
about a direct specification for the driving dynamics
from the ego-position layer. As a result, the two layers
may destabilize or lead to new, spurious fixed points.
This would happen, for instance, if heading direction
and velocity changed at about the same rate as needed
to update ego-position. Because ego-position will de-
termine where the attractors for heading direction lie
and heading direction determines where the attractors
for ego-position lie, the transients at both layers can
either lead to an undesired attractor for both systems
(for instance, stopping half way in their relaxation
due to a concurrent shift in the attractor of each) or to
destabilization (for instance, both variables drifting
constantly). How can one deal with such a system?
One attitude that can be taken is, of course, to con-
sider all behavioral degrees of freedom as one big dy-
namical system, the qualitative dynamics of which is to
be analyzed and designed. Not only does this become
impractical very quickly, but it may also be inade-
quate for intrinsic reasons. In the example the problem
is that intrinsically an attractor for heading direction
may be well-defined only given a particular estimate
of ego-position (for instance, for a contribution lead-
ing to returning toward a memorized target position
represented in allocentric coordinates). Reversely, the
attractor for ego-position can be computed only given
the current motion command (if dead-reckoning is to

be used). Thus, one cannot design the behavioral dy-
namics adequately without separating these two layers
into two different behavioral dimensions.

The cue to these sorts of problems is the concept
of time scale: the time over which individual compo-
nents of the behavioral dynamics relax. Close to fixed
points these time scales can be analyzed in terms of
the real parts of the eigenvalues of the local stabil-
ity problem (similar as in control theory). Dimen-
sions along which the system relaxes with different
time scale have clear-cut dynamic relationships: the
slower directions control the faster directions. Intu-
itively speaking, the faster variables relax to the value
prescribed by the slower variables before these latter
change appreciably. Thus, from the point of view of
the faster variables the slower ones are quasi-constant
parameters (one says, they are adiabatic variables).
From the point of view of the slower variables, the
faster ones can be eliminated by assuming they have
already relaxed to the adequate attractor (one speaks
of adiabatic elimination). Thus, given different time
scales, the two layers can be designed separately.

The more general idea is thus to cut the high di-
mensional state space of a multi-layered system into
individual layers by introducing differences in time
scale among different variables. Then the behavioral
dynamics at the various levels may be analyzed and
designed separately using such techniques as adiabatic
elimination or multi-scaling. (A mathematical treat-
ment of these sorts of problems is provided, for in-
starce, in [30] in terms of multi-scaling methods and
in [41] in terms of the Center Manifold Theorem.
Adiabatic elimination is treated along more intuitive
lines in [24].)

Does this lead to a simple fixed hierarchy of be-
haviors, ordered along increasing time scales, with the
slowest variables on top? The answer is no: such a hi-
erarchy may exist at a given moment of time, but it
may change in time as a result of the ongoing dynam-
ics itself. Such changes are brought about again by
instabilities. When a dynamics in whatever layer goes
through an instabilities it becomes momentarily very
slow. Thus, in effect, such a layer moves to the top of
the hierarchy while it is near the instability. In a sense,
the behavioral dimensions relative to which the system
is currently going through a critical “decision” point
are governing all other variables. The resulting hier-
archy is thus highly flexible and, yes, dynamic (see
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also part (3) in Section 4.2).

4.1. Relation to other work

Behavior-based approach. As hinted in the In-
troduction, the dynamic approach has a lot in com-
mon with the behavior-based approach to autonomous
robots [9,12,42], the two most important points be-
ing: (1) The system is designed in terms of elemen-
tary behaviors. (2) Sensory information is used at a
low level of processing and in a manner specific to
the behavior that this information feeds into. The dy-
namic approach diverges in several aspects, however.
First, the emphasis on theory in the dynamic approach
contrasts with the rather atheoretical (or even anti-
theoretical) emphasis in some of the behavior-based
work. This means, in particular, that in the dynamic
approach the behavior of the robot is represented in-
ternally (through the behavioral variables). In fact,
the main trick of the approach is to work with these
behavioral variables that isomorphically represent the
overt behavior of the robot. By contrast, behavior-
based approaches stress the concept of directly act-
ing out behavior. A second obvious difference is that
in the dynamic approach representations of informa-
tion are explicitly used. The philosophy has been to
treat representations in the same way as overt behav-
iors. This did not prevent us from dealing both with
external information and with the representations of
internal states of the system in world coordinates, for
instance.

Like subsumption [11] or schema theory [3] an
attempt is made to provide a uniform language in
which architectures for autonomous systems can be
formulated. The main distinctive feature of the pro-
posed language is the concept of (asymptotic) stabil-
ity, through which both control stability and decision
making/flexibility is brought about. This reaches into
the use of neural representations, which are structured
through the same type of analysis (see also below).

It may be useful to look at dynamic architectures to
see in which way behaviors may interact and compare
this to the goals and realities of behavior-based ar-
chitectures. There are really two types of interactions
within dynamic architectures: (1) A given layer of be-
havior can specify states at another layer of behavior.
This means that the given layer determines the position

of attractors or repellors of the dynamics of the other
layer. For instance, in our applications the obstacie
representation acts onto the heading direction dynam-
ics in this way. From this form of interaction various
different kinds of functionalities can be built such as
sensory fusion, information processing, and both feed-
forward and feed-back stabilized movement behavior.
(2) On the other hand, a given behavior can activate or
deactivate another behavior. This occurs through the
strength of the input of one layer into the other and
would typically involve a neural representation. This
type of interaction occurs, for instance, within an indi-
vidual neural field when isolated instances are created
as separate localized activity peaks. More generally,
entire behaviors could be activated or deactivated in
this manner, so that subsystems can be taker in and
out of the global perception-action stream. In the jar-
gon of subsumption, the first type of interaction might
be similar to subsuming itself, the second to inhibiting
output or suppressing input.

Potential field approach. The dynamic approach
shares with potential field methods [2,26,34,31,59]
the idea of integrating multiple constraints by adding
contributions at the level of a vector field. The main
difference is that in the dynamical approach the system
is at all times in an attractor during operation, while in
the potential field approach behavior is planned by fol-
lowing a transient solution. To see this consider again
obstacle avoidance. In common potential field algo-
rithms the spatial position of the vehicle is the vari-
able over which a vector field is defined. The target
is made attractive (minimum of a potential) and ob-
stacles are made repulsive (maxima of a potential).
Paths are generated by moving downhill in the poten-
tial using various types of algorithms. In terms of dy-
namics this corresponds to the process of relaxation
toward the attractor at the target. Thus the actual be-
havior is the transient. The only moment in time when
the system is in an attractor is after it has reached the
goal. (So, in dynamic terms, these models essentially
generate postural behavior.) One practical implication
is that the design of the system, that is, determining
the functional forms of the various contributions to
the potential, cannot be based on an analysis of the at-
tractor structure of the dynamics and its bifurcations.
The transient solutions are, in fact, not systematically
affected by instabilities that occur somewhere in the
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vector field.

This difference may seem to be of a rather technical
nature, but it is not. One conceptual consequence is
that the dynamic approach contributes to the control-
theoretic stability of the overall behavior as it is acted
out in the world while potential field approaches do
not. This is why using the dynamic approach pushes
us to consider the closed perception-action loop of the
system and puts us closer to behavior-based methods,
while the potential field approach actually originated
as a heuristic method of planning and is not typically
considered as part of the closed loop. A second im-
portant consequence of this difference is that the dy-
namic approach makes specific demands on the types
of variable used. Only for specific choices of the be-
havioral variables is it possible to have the system be-
have while sitting in an attractor. In the example of
obstacle avoidance, for instance, using the cartesian
position of the robot as the variable in terms of which
the system plans and generates behavior, precludes
this possibility: The only behavior that corresponds to
an attractor of this variable is posture, resting where
the system currently is.

Finally, we have shown how the construction of lay-
ers of dynamic representations can successfully deal
with the notorious problem of spurious states from
which potential field approaches suffer, without giv-
ing up the locality and closed-loop characteristic of
the method.

Other dynamic approaches. Concepts from the
theory of dynamical systems begin to be applied
by other researchers to autonomous robotics (e.g.,
[6,55,53]), and more widely, to autonomy in a more
abstract sense {7]. Randall Beer [6] has sketched
a general framework somewhat similar to ours. The
primary difference is that he uses dynamics as a
method of analysis (of systems generated by evolu-
tionary methods), while we are using dynamics as a
method of design. A conceptual difference is that in
our approach the nature of the behavioral variables is
quite explicitly constrained by the requirement that
goals can be expressed as values or sets of values
of these variables. As a consequence, we distinguish
between behavioral variables and neural activation.
Neural activation in our approach also takes the form
of dynamical variables, but these have a different sig-
nificance and couple differently into other layers than

behavioral variables (that is, they couple in terms of
strength of information, not in terms of specifying
behavior). By contrast, in Beer’s framework, the na-
ture of the dynamical variables is left quite open. A
third difference is again, as relative to the potential
field approach, our principle of generating behavior
through attractors. Beer employs transient trajectories
to embody behavior.

Tim Smithers [53] is arguing for the use of dy-
namical systems to describe the agent-environment
relationship. His distinction between interaction and
infrastructure dynamics is particularly useful. The
shared emphasis is on principles of design, which
enable rational choice of system parameters and ar-
chitectures. Again, the primary difference with our
approach is our insistence on specific prescriptions
of how to identify adequate variables and the map-
ping of behaviors onto attractors. Somewhat related
ideas have also been expressed by Luc Steels [55],
although the analogy with dynamics does not seem to
go beyond metaphor at the moment.

Neural network theory. The concept of a neural
field dynamics has precursors in the domain of model-
ing target selecting and binocular function in nervous
systems [27,13] although the aspect of self-generation
of localized peaks was not stressed in that work. More
generally, the principle of neural representation is, of
course, widely used in the field of neural network mod-
eling. To avoid confusion we stress that we have not
addressed issues of learning in neural representations
at all, although the framework offers this avenue. Work
on the self-organization of motor-maps in the context
of conventional robotics [44] leads the way in this
direction. Arguments for topological representations
for autonomous robots are given in [23,61] (see also
references therein).

The dynamic approach brings in two elements that
are to some extent new in this domain: (1) By linking
neural fields to the concept of behavioral dynamics
we provide new criteria with which to design neural
networks. In particular, the distinction between spec-
ifying information and strength of information, and
the concept of range of specification were derived by
establishing behavioral dynamics as a limit case of
neural field dynamics. Linking decision making to bi-
furcations allows the rational design of neural inter-
actions, for instance, in the context of sensory fusion.
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(2) The principle of self-generation of activation pat-
terns is a new emphasis in this domain. Under ade-
quate circumstances, intra-field interactions dominate
over input, which serves only to position a marginally
stable localized activation peak. This makes it possi-
ble to generate memory representations, and to real-
ize systems, in which a unique instance exists at all
times, independently of the presence of input. More
abstractly, it is through self-generation of neural acti-
vation that the neural representations we have devel-
oped attain their invariance properties. In a sense, this
is a possible mechanism for symbol grounding.

Grid methods of sensory fusion. A more specific
relationship of our approach to established methods in-
vites comment. In the domain of sensory fusion, meth-
ods have been developed in which sensory informa-
tion is accumulated to generate incrementally a world
model (see [20] for review, see also [8]). These
methods closely resemble our neural representations,
for instance, of obstacles in the world. The basic con-
ceptual difference is that our representation is itself a
behavior, that is, it has dynamic stability properties and
is structured by intrinsic constraints, not only driven
by input information. To exemplify this somewhat ab-
stract point we explain a subtle technical difference:
The neural representations of obstacle position in our
two applications are structured by the demands of the
heading direction dynamics, into which these repre-
sentations feed. In particular, the problem of spurious
attractors of a heading direction dynamics in the pres-
ence of cluttered sensory information was addressed
by designing the neural representations such that a
particular minimal distance between activated repre-
sentatives of obstacle information was achieved. For
instance, in the Amari neural field dynamics, this dis-
tance is visible as the separation of localized peaks of
activation (Figs. 18, 19) and is determined by the size
of the mexican hat interaction kernel). This minimal
distance between representatives is not, however, the
spatial resolution of the obstacle representation. The
resolution is given by the sampling of the neural field
or the grid size of the discrete neural network. Thus,
for instance, an ensemble of spatially separated peaks
may be shifted in the plane by amounts much smaller
than the minimal separation of peaks. This is what
happens continuously while the neural representation
is coupled to incoming information. By contrast, in

the grid histogram techniques, the resolutions of the
resulting world representation is set by the grid size. If
in such representations an attempt were to be made to
reduce the clutter of sensory information by generat-
ing a minimal distance between entries it would have
to come at considerable cost to spatial resolution.

The fact that neural representations are designed
like behaviors based on task requirements and with
their intrinsic dynamic properties is crucial for the in-
tegration of such representations into complete sys-
tem architecture. Both the uniformity of the theoreti-
cal concepts and, more specifically, the existence of a
time scale in the sense of dynamics, are prerequisites
for such integration.

4.2, Strengths

The primary strength of the dynamic approach
might be its degree of theoretical penetration. By
mapping behavior onto attractors and expressing be-
havioral constraints as contributions to the dynamics
that define either attractors or repellors, the mathe-
matics of the qualitative theory of dynamical systems
become tools for the design, analysis and maintenance
of autonomous robot systems. Conceptually, there
are two important implications: (1) Through behav-
ioral dynamics those functionalities that are typically
described in terms of planning, representation, and
information processing are endowed with dynamic
stability properties and can thus be dealt with in a
manner that is consistent with prevalent control the-
oretic concerns. (2) By making sensory information
define attractors or repellors of behavioral dynamics
much of the computational burden is lifted off sensory
information processing. All that is needed for a sen-
sor is that it provides information about tendencies of
desirable or undesirable behavior, or, in other words,
that it “specifies behavior”. Specifying behavior does
not necessarily mean that all parameters of the behav-
ior must be computed. Any structured contribution
capable of indicating a direction in the phase space
of the behavior dynamics in which to move can make
a contribution.

A few concrete implications can be discussed that
flow from these conceptual issues: (1) Decision
making occurs in the sense that small and unspecific
changes in sensory information can lead to qualitative
change of behavior. Such changes are brought about
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by instabilities. Bifurcation theory can be used to de-
sign a behavioral dynamics such that it goes through
a desired bifurcation under the adequate conditions.
We illustrated, how the decision whether or not to
pass through between two obstacles can be designed
by constructing the pitchfork biturcation that links
the two limit cases (of passing and of going around)
and adjusting the parameters of the dynamics so that
the bifurcation occurs at the right point (at the dis-
tance between obstacles at which the vehicle just fits
in between).

(2) Sensory fusion involves a related use of insta-
bilities. When multiple contribution to a behavioral
dynamics overlap to varying degrees with respect to
the behavior they specify, the corresponding contribu-
tions to the behavioral dynamics may either essentially
superpose leading to forms of averaging among the
behaviors specified by each sensory channel. Alterna-
tively, if discrepancies between the behaviors speci-
fied by such contributions are excessive, a bifurcation
leads to a splitting up of the resultant attractor. We il-
lustrated how a pitchfork bifurcation can lead to two
separate attractors, each relying on a different sen-
sory channel. Which attractor the sensory representa-
tion relaxes to then depends on the recent history of
the system. An alternative scenario removes one of the
attractors through a tangent bifurcation. The control
over which scenario occurs and at which point this
bifurcations take place is again in the hands of the de-
signer, who can set parameters relative to strength and
range of the contributions to the dynamics.

(3) Because each behavioral module is a dynamics
with attractor solutions, its intrinsic time scale can be
assessed in terms of the relaxation time of its attrac-
tors. System integration is then the problem of cou-
pling different such dynamics. The various techniques
for dealing with dynamics that differ in time scale (that
is, in relaxation time) can thus be used to design in
which manner these behavioral modules will control
each other. Essentially, slower modules always control
faster modules (slow and fast always in terms of time
to relax to the corresponding attractor state). When a
particular mocule must be dominant the designer can
assign a slow relaxation time to the module. However,
because relaxation times change as the qualitative dy-
namics changes, which module in effect dominates
may depend on the behavioral situation. By perform-
ing the adequate bifurcation analysis, the designer can

determine under which circumstances which module
is to be the dominant one. For a simple example, con-
sider ego-position estimation based on dead-reckoning
and on landmarks. Usually, dead-reckoning will be the
slow variable dominating the integrated ego-position
estimate. When a landmark is encountered, the inte-
grated ego-position system can be made slow, so that it
now dominates and resets the dead-reckoning system
[56]. Needless to say, these are only the simplest of
manifold possibilities through which behavioral sys-
tems can be structured by adjusting its interaction dy-
namics. Much remains to be explored in this direction.

(4) Examining the effective behavioral dynamics
may also be a way in which the engineer can determine
to which degree the often neglected “infrastructure
dynamics” [53] is consistent with the design goals.
By design, sensory information is assumed to spec-
ify behavior. When in implementation the dynamics
generated by on-line sensory information is analyzed
in terms of the resultant attractors and their stabilities
the quality of such sensory information (and the va-
lidity of the design assumptions) can be assessed. At
the other end, by comparing the behavioral state as ex-
pressed in the behavioral dynamics with the real-time
effector movement the degree to which the infrastruc-
ture dynamics links uniquely the behavioral level to
the effector level can be diagnosed. Adjusting the time
scale of the behavioral dynamics so that it is slower
than the infrastructure dynamics is the simplest design
option to eliminate problems at this end.

(5) For higher cognitive or sensory functions the
principle of neural representation is essential. Draw-
ing on recent progress in neural network theory the
feedforward structure of neural fields can be designed
to perform desired transformations. The key element,
self-generation of neural activation, adds invariance of
representation under change of sensory information to
the tool kit. In our examples, for instance, we provided
a simple form of obstacle position memory which was
invariant under the transformations of sensory infor-
mation brought about by the vehicle moving in the
world.

4.3. Drawbacks
The major drawback of the dynamic approach is

its computational cost. This is a serious issue only
when neural dynamic fields are used. These integro-
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differential equations must be solved with sufficient
spatial resolution to avoid pinning effects, in which lo-
calized solutions get stuck on the grid points. Because
the equations involve convolutions over the field, the
computational cost increases quickly with the dimen-
stonality of the problem. This drawback is not lim-
ited to implementation on serial computers because
the strongly cooperative nature of the dynamics cre-
ates potential problems for parallel implementation as
well.

Other than by waiting for the famed *brain-like”
computing devices (which obviously would be able
to do this just as our cortex does) this problem can be
addressed in two ways: (1) Designing behaviors in
highly modular fashion limits the maximal dimension-
ality of fields. Indeed, once this has been recognized as
a problem, one can achieve a lot while never going be-
yond one-dimensional fields. (2) More radically, one
might view the dynamic approach merely as the the-
oretical framework from which to structure a design.
The actual implementation might then use much sim-
pler mathematical techniques, for instance, algorithms,
that mimic the dynamic properties needed from the
theoretical point of view. For instance, sensory fusion
with bifurcations leads essentially to hysteretic deci-
sions about which channel to follow. This might be
directly implementable in an algorithm that does not
actually solve the neural field dynamics but instead
reads out maxima of the input, for instance, and keeps
a single dynamical variable responsible for generating
hysteresis effects to stabilize the decision. A mild form
of this attitude was the “short-cut” through which we
transformed neural fields into computationally trivial
ordinary differential equations for the uniquely instan-
tiated parameter heading direction (second applica-
tion).

4.4. Perspectives

To us there seem to be two directions in which
progress can be made immediately by developing the
concepts discussed here. One is by carrying the work
toward higher cognitive functions. The issue to be ad-
dressed is that of invariance, in which active behavior
may allow an autonomous system to extract behavior-
specific information even as the information received
at the sensory surface varies. First steps in this direc-
tion were made here. The second direction is to more

seriously probe the practical usefulness of the dynamic
approach by developing design, analysis and diagnos-
tic tools in real robot environments. The goal would
be to make an autonomous robot truly predictable, and
thus robust and manageable.

More globally, part of the appeal of the dynam-
ics approach is its unifying nature, drawing together
aspects from various subfields. For instance, the po-
tential field planning methodology is brought in line
with control theoretic concepts, and these are com-
bined with neural network ideas. The full potential of
this unification has not yet been realized at all. For
instance, integrating learning into dynamical architec-
tures now seems possible and desirable (a candidate
system is [43]). The relationship to fuzzy control can
be explored and is potentially fruitful (see [21] for a
discussion).
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