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Chapter 4

Using attractor dynamics to
control motion based on low-level
distance sensors

This chapter demonstrates (see also Bicho, Mallet and Schöner, 1999b) that
the dynamic approach to path planning (Schöner and Dose, 1992) lends itself
naturally to implementation on simple autonomous vehicles using only low-level
sensory information such as distances sensed by infra-red detectors or sonars. It
also shows how theoretical design and hardware implementation are enchained ef-
fortlessly. The chapter starts with a review of the literature in the domain of path
planning so that we can position the dynamic approach to path planning with respect
to the other approaches. Section 4.2 presents a dynamical system that generates a
time series of the vehicle’s heading direction. Each sensor is assumed to contribute a
repulsive force-let to the vector-field of this dynamical system and their sum leads to
obstacle avoidance. Movement toward the target is achieved by adding an attractive
force-let. Next, Section 4.3 explains how the vehicle’s path velocity can be controlled
such that the system is near an attractor at all times. Section 4.4 presents some
implementation details. Experimental results that demonstrate the properties of
the path generating system and the velocity control system are presented in Section
4.5. Finally, the chapter ends with conclusions.

4.1 Introduction

Motion planning is an essential part of an autonomous robot system (Latombe,
1991). In the basic variation of motion planning for a mobile robot, the task is
to generate a collision-free vehicle path that brings the robot system to a specified
target location. The majority of the research in this domain has been conducted, in
the field of robotics, under the title of path planning. Even-though motion planning
has been studied for two decades and a large body of research reported in the
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literature exists, the design of a simple and reliable path generating (planning and
motion control) system is still a challenge.

The problem has been addressed in theoretical work by isolating the path plan-
ning aspect from the aspects of obtaining sensory information about the world and
controlling vehicle motion to generate the path (review, e.g., in Latombe, 1991;
chapters 4 and 7 in Cox, Wilfong, 1990; Kortenkamp, 1998; Pruski, 1998).

Classical theoretical approaches to the problem, also called model-based plan-
ning, assume that complete knowledge of the world’s geometry is known prior to
the planning stage (Lozano-Perez and Wesley, 1979; Schwartz and Sharir,
1983; Cameron, 1998). The objective is to find a connected sequence of collision-
free spaces for a finite-size object (a robot), from an initial position to a target
position, typically based on polygonal representations of the objects in the world.
Some of these theoretical approaches propose algorithms that guarantee that kine-
matic and dynamic constraints are fulfilled and that a path is found if one exists
(Gilbert and Jonhson, 1985; Shin and Mckay, 1985; Kim and Shin, 1985;
Kedem and Sharir, 1988). A path is then generated by piecing together the
free spaces or by tracing around the forbidden areas (Brooks, 1983; Singh and
Wagh, 1987; Takahashi and Schilling, 1989) .

After the planning stage, the robot has to control its motion along the nominal
path. The major difficulty here is due to the uncertainties because of unprecise
world modeling and/or changes in the robot environment, e.g. appearance and
disappearance of objects, and moving objects (Laumond, 1993; Hu and Brady,
1997). First, the path has been computed from unprecise geometric models of the
environment. Either the planned path is guaranteed to be safe with respect to these
uncertainties, or the robot has to check its safety in the real world. Second, the robot
does not perfectly execute the nominal path. Motion planning in the presence of
uncertainties and feedback control gave rise to the necessity of sensor based motion
planning (Feng and Krogh, 1990). However, it is not possible to simply add a
step to acquire sensory information, and then rebuilt the world model and re-plan
a collision free path dynamically using these classical schemes (i.e. computational
geometry methods) since they are very difficult to obtain and maintain in real time.
This also poses the problem of the overall control-theoretic stability of the path
generation systems, as the step-wise computation of representations of obstacles
and targets is not characterized by a time scale. Thus it might be difficult to
satisfy Brockett’s necessary condition of systems controllable by smooth feedback
(Brockett, 1983).

In contrast to the approaches described above, the potential field approach uses a
scalar function to describe both objects and free space (Khatib, 1986). The target
location is modeled with an attractive potential and the obstacles with repulsive po-
tentials. Traditional potential field methods typically consider all obstacles at every
point in the world. The path is then generated by following the negative gradient
of the overall potential function. Although this approach can be computationally
efficient (Barraquand and Latombe, 1991) and is suitable for on-line feedback
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control (Feng and Krogh, 1992) it suffers from local minima, which may cause
the path to terminate at a point other than the target location. Some solutions have
been proposed that attempt to overcome this limitation (Cannolly, Burns and
Weiss, 1990; Rimon and Koditschek, 1992).

The above approaches rely upon global representations of the world in which the
robot operates. Another approach to the navigation problem is to define instead a
local representation of the space around the robot (e.g. Lumelsky and Stepanov,
1986; Lumelsky and Stepanov, 1987). Still another possibility is the limit case
where sensory information is used at low levels of parameter extraction which is not
typically represented (Brooks, 1986; Borenstein and Koren, 1989; Zapata,
Lepinay and Thompson, 1994; Fujimori, Nikiforuk and Gupta, 1997). This
later approach is usually called sensor-based motion planning.

Among all the approaches, the potential field approach is one of the most popular
to date. The main reason is that this approach is suitable for on-line feedback control
(Arkin, 1989; Arkin, 1998).

The dynamic approach to path planning and control (Schöner and Dose,
1992) makes this linkage to control even stronger by replacing the transient solutions
of the potential field approach with attractor solutions (asymptotically stable states)
of a dynamical system, that therefore contributes to the asymptotically stability of
the overall control scheme.

In the planning dynamics, that is, in the equations of motion, the vector field
is specified so that it captures the task constraints as component forces that define
attractors or repellers of the dynamical system. An attractive force serves to attract
the system to the direction at which the target lies, and repulsive forces are used to
avoid the directions at which obstacles are located. Since some of these forces have
limited range from their superposition a non-linear dynamical system results. By
design the system is tuned so that the planning variable is in a resulting attractor of
this dynamics most of the time. Thus, the path is in fact generated by an attractor
solution and not by a transient solution of the dynamical system.

This way one can avoid the difficult problem of designing a non-linear dynami-
cal system all transient solutions of which fulfill multiple constraints. By contrast,
designing a dynamical system, the attractors of which fulfill particular constraints,
is possible by making use of the qualitative theory of dynamical systems (Perko,
1991). Qualitative changes in the robot’s behavior arise through changes in the
number, nature, and stability of fixed points. Such changes correspond to bifurca-
tions in the vector field. Local bifurcation theory helps to make design decisions
around points, at which the system must switch from one type of solution to an-
other (Schöner, Dose and Engels, 1995). The values of model parameters can
be chosen in part based on such analyses.
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4.2 The attractor dynamics of heading direction

The dynamic approach to path generation in autonomous vehicles (Schöner and
Dose, 1992; Schöner, Dose and Engels, 1995) employs the heading direction,
φ, relative to some external world axis as the planning variable. The path plan is
a time course of this variable which is obtained in time as attractor solutions of a
dynamical system for the heading direction.

Task constraints are component forces which are cast together into the vector
field of this dynamical system. For example, the directions φ = ψobs (relative to a
fixed external world axis) in which obstacles lie from the view point of the robot,
and similarly, the direction φ = ψtar in which the target lies are constraints that are
represented by repulsive and attractive force-lets acting on the heading direction (see
Figure 4.1). In isolation, each force-let erects an attractor (asymptotically stable
state) or a repeller (unstable state) of the dynamics of the planning variable, φ. The
attractive force-let serves to attract the system to the desired value of the heading
direction (here the direction in which the target lies). A repulsive force-let is used
to avoid that the system takes an undesired value (here the direction in which an
obstacle lies). By design, the system is operated so that the heading direction is in
or near a resulting attractor of this dynamics. As the vehicle moves, the directions
to the obstacles and target in the world changes, so that the resulting attractor
shifts, pulling the heading direction along (Figure 4.2).

Figure 4.1: Constraints for the dynamics of φ are the directions at which obstacles and
target lie from the current position of the robot, i.e. directions ψobs and ψtar.

Because all angles are measured in an external reference frame, the contributions
of the obstacles′ and the target to the dynamical system of heading direction do not
depend on the current orientation of the robot.

In Schöner and Dose (1992) and Schöner, Dose and Engels (1995) repre-
sentations of the locations of obstacles in the external reference frame were obtained
from a computer vision system, that employed the method of inverse perspective
projection (Mallot, Bültoff, Little and Bohrer, 1991) based on a cali-
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Figure 4.2: Resultant attractor (bottom Panel) from the superposition of the repulsive
force-let (middle Panel) from obstacle constraints and attractive force (top Panel) due
to the target constraint. Parameters must be tuned so that the system is relaxed in the
attractor.

brated camera geometry. Thus, if the robot was rotated on the spot, the directions
to the objects in the world did not change and thus the dynamics of heading direc-
tion was independent of the current value of heading direction. Only because this
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was true did the resultant dynamics have attractors and repellers as designed.
The question we address here is how can this approach be applied to our lower

level vehicles, which know nothing about external reference frames, nothing about
objects resting in the world, but have only their own low-level sensory information
to generate a dynamics of heading direction? We answer this question in the next
subsection.

4.2.1 Obstacle avoidance

The vehicle used in this project has seven infra-red sensors mounted on a ring which
is centered on the robot’s rotation axis. These infra-red sensors are used to measure
the distance to surfaces at the height of the ring (see Section 3.2).

On this low-level platform, each distance sensor points into a fixed direction, θi,
in a reference frame fixed to the robot body. Thus each distance sensor looks into a
direction, ψi = φ + θi, in an external reference frame if φ is the heading direction in
such an external frame. This is illustrated in Figure 4.3.

Figure 4.3: Each sensor i (i = 1, . . . , 7), which is mounted at angle θi relative to the
frontal direction, specifies an obstacle at direction ψi = φ + θi in an external reference
frame. In the figure, sensors 5 and 6 specify virtual obstacles at ψ5 and ψ6 respectively.

Our strategy is now simply to say that each sensor i (i = 1, 2, . . . , 7) specifies
a virtual obstacle in that direction ψi, if an obstruction is detected there, so that
repulsive force-lets centered at these directions are erected. Each repulsive force-let
reads (see Figure 4.4):

fobs,i(φ) = λi(φ − ψi) exp

[
−(φ − ψi)2

2σ2
i

]

i = 1, 2, . . . , 7 (4.1)
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In this equation only the difference φ − ψi = −θi, which is fixed and known,

Figure 4.4: A contribution to the dynamics of heading direction expressing the task con-
straint “avoid moving toward obstacles” is a force-let with a zero-crossing at the direction,
ψobs,i at which an obstruction has been detected. Every distance sensor (i = 1, 2, . . . , 7)
contributes such a force-let centered on the direction in which the sensor points. The pos-
itive slope of force at the zero-crossing makes that direction a repeller. By decreasing this
slope with increasing measured distance, only nearby surfaces repel strongly. The range
of the force-let is limited based on sensor range and on the constraint of passing without
contact.

enters into the dynamics of the heading direction. This renders the performance
independent from the calibration of the planning coordinate system. The strength
of repulsion, λi > 0, from the virtual obstacle at direction ψi, is a decreasing function
of the sensed distance, di:

λi = β1 exp

[

− di

β2

]

(4.2)

where β1 controls the maximum repulsion strength of this contribution, and β2

controls the rate of decay with increasing distance. Thus, when no surface is within
the range of the distance sensor, then the corresponding force-let is zero and drops
out of the dynamics of heading direction.

The angular range over which the force-let exerts its repulsive effect is determined
by σi, which depends on the sensor sector, ∆θ (= 30 deg), and also on the distance,
di, because the angle subentended by half the vehicle at the sensed distance is added
on each side of the sensor sector as a safety margin:

σi = arctan

[

tan

(
∆θ

2

)

+
Rrobot

Rrobot + di

]

(4.3)
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The first term reflects the angular range, ∆θ, over which the infra-red sensor may
detect reflected light, while the second term expresses the additional angle required
for the robot to pass next to an obstacle that would occupy maximally the entire
sensor range. The further away the robot is from the obstacle, the smaller the
angular safety margin, because the angle subentended by the robot itself when next
to the obstacle decreases as is indicated. This is depicted in Figure 4.5.

Figure 4.5: The range of the repulsive force-let is limited based on the sensor range and
on the constraint of passing next to the virtual obstacle without contact.

The contributions from all the sensors are summed. Therefore, the overall ob-
stacle avoidance dynamics reads:

dφ

dt
= Fobs(φ) =

7∑

i=1

fobs,i(φ) (4.4)

Figures 4.6 and 4.7 illustrate that the summed obstacle contributions depend
little on the current orientation of the vehicle.

In the situation depicted in Figure 4.3 two sensors respond to the obstacle. The
sum of their contributions leads to a single repeller that covers the entire angular
range subentended by the obstacle (see Figure 4.6). Figure 4.7 shows how at a
different orientation of the sensors relative to the obstacle three sensors detect now
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Figure 4.6: In the situation depicted in Figure 4.3 two virtual obstacles are detected, at
directions ψ5 and ψ6. In that figure φ = π/4 rad, ψ5 = 5π/12 rad and ψ6 = 7π/12 rad,
the sensed distances are both 35 cm. Two repulsive force-lets centered at these directions
are therefore erected (solid thin lines). The solid bold line shows the resultant obstacle
dynamics. The resultant repeller is at π/2 rad.

the obstacle, leading to changed individual repulsive force-lets. However, their sum
erects a repeller at approximately the same direction with respect to the external
reference frame. This result thus shows that the dynamics for the heading direction
has indeed the designed structure with the repellers and attractors at the right
location, as it is invariant under rotations of the vehicle on the spot. This invariance
is, of course, constrained by the number of sensors disposed around the robot. The
more sensors are used the more invariant the dynamics is.

4.2.2 Target acquisition

As a simple variation of the “find-goal problem” we assume that the absolute co-
ordinates of the target are known. A second, more higher level, variation of this
problem is to leave for the robot the responsibility of determining the target loca-
tion based on its own sensory information (see Chapter 6 and Bicho, Mallet and
Schöner, 1999a).

For simplicity, because in this chapter we want to focus on the problem of path
planning and motion control, the target is given in external coordinates (Xtarget,Ytarget).
The robot keeps an estimate of its own location, (Xrobot, Yrobot), in the external refer-
ence frame by integrating motor commands, through the dead-reckoning mechanism,
from an initial reference position:

dXrobot

dt
= v cos(φ) (4.5)

dYrobot

dt
= v sin(φ) (4.6)
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Figure 4.7: On the top: with respect to Figure 4.6 the robot turned left 5π/12 rad.
From this rotation three virtual obstacles at directions ψ2, ψ3 and ψ4 result. In this figure
φ = 2π/3 rad, ψ2 = π/3 rad, ψ3 = π/2 rad and ψ4 = 2π/3 rad. Distances are 40, 30 and 40
cm respectively. On the bottom: three repulsive force-lets are erected at these directions.
The bold line represents the resultant obstacle avoidance dynamics. The resultant repeller
is near π/2.

Where v is the path velocity and φ the heading direction as obtained from the
planning dynamics. The direction, ψtar, relative to the x-axis, in which the target
lies as “seen” from the current position of the robot is:

ψtar = arctan

(
Ytarget − Yrobot

Xtarget − Xrobot

)

(4.7)

The orientation toward the target, is specified by erecting an attractor at direc-
tion ψtar with strength λtar. Because target acquisition is desired from any starting
orientation of the robot the range over which this contribution exhibits its attractive
effect, over the heading direction of the robot, φ, is the entire full circle (i.e. from
0 to 2π rad). The simplest mathematical form for this attractive force-let is (see
Figure 4.8)
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dφ

dt
= ftar(φ) = −λtar sin(φ − ψtar) (4.8)

For this module the calibration of the dynamic variable heading direction, φ, does
matter.

Figure 4.8: A contribution to the dynamics of heading direction expressing the task
constraint “move toward targets” is a force with a zero-crossing at the specified direction
toward the target, ψtar. The negative slope at the zero-crossing makes this an attractor
of the dynamics. The target contribution is sinusoidal and extends over the entire range
of heading direction. This leads to a repeller in the direction π + ψtar opposite to ψtar.

4.2.3 Integrating the two behaviors

The integration of these two behaviors is obtained by summing obstacle and target
contributions to the vector field:

dφ

dt
= Fobs(φ) + ftar(φ) (4.9)

Precedence of obstacle avoidance is accomplished making the strength of the obsta-
cle contributions stronger than the target contribution. More sophisticated control
over activation and deactivation of such contributions can be obtained using acti-
vation networks (see Steinhage and Schöner, 1997; Steinhage, 1998; Large,
Christensen, Baczy, 1999) but is unnecessary here.

Figure 4.9 illustrates the simultaneous effect of target and obstacle constraints.
In the depicted situation, the space between the two obstacles is not sufficient for
the robot to pass between them. The target lies behind this opening, the most
challenging situation for obstacle avoidance. The obstacle avoidance contribution
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to the dynamics (solid thin line) generates a repeller at the direction in between the
two obstacles, while the target contribution (dashed line) erects an attractor at this
direction. The resultant dynamics (solid bold line) has a repeller at this direction
because the obstacle contributions dominate.

Figure 4.9: On the top: The distance between the obstacles is not sufficient for the
robot to pass through, and the target lies in the direction pointing in between the two
obstacles thus defying the obstacle avoidance behavior. On the bottom: Obstacle and
target contributions for the dynamics are represented by the solid thin line and the dashed
line respectively. The resulting dynamics is the solid bold line.

Qualitative changes of behavior arise if the number and stability of fixed points of
the heading direction dynamics changes. These changes correspond to bifurcations of
the vector field brought about by changing sensory information as the robot moves.
For instance, an attractor pointing along a path leading between two obstacles may
become unstable and turn into a repeller as the vehicle approaches the obstacles,
and the obstacle contributions widen in angular range. At such bifurcations, the
heading direction may come to lie exactly on a repeller (a former attractor that
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turned unstable). To ensure escape from repellers within a limited time, the planning
dynamics is augmented by a stochastic force

fstoch =
√
Qξn (4.10)

chosen as Gaussian white noise, ξn, of unit variance, so that Q is the effective variance
of the force. This stochastic force is in addition to sensory and motor noise, which
may vary as a function of environmental conditions. Since behaviors are generated
by asymptotically stable states (attractors) the system is robust against noise.

The complete heading direction dynamics is therefore:

dφ

dt
= Fobs(φ) + ftar(φ) + fstoch (4.11)

Planning decisions, i.e. qualitative changes in the behavior, arise through bifur-
cations in the vector field which are brought about as the vehicle moves or the
environment changes.

4.3 Control of driving speed

As the robot moves sensory information changes and thus attractors (and repellers)
shift. The same happens if obstacles move in the world. To keep the system stable,
i.e. in or near an attractor at all times, the rate of such shifts must be limited to
permit the system to track the attractor as it shifts. One way this can be accom-
plished is by controlling the path velocity, v, of the vehicle. This is because, the
velocity with which the fixed points shift is determined by the relative velocity of
the robot with respect to its environment. Let us analyze the rate of such shifts
for the simplest case of the robot moving in a resting environment with constant
velocity and heading direction. Figure 4.10 shows that for this case the maximal
rate of change of obstacle or target bearing occurs when the corresponding objects
are seen sideways.

We derive the relationship between the maximal rate of change, ψ̇max, and the
vehicle’s path velocity, v (see Figure 4.11): Let us assume that initially, t = 0 sec,
the object (target or obstacle) is located exactly at a right angle to the current
heading direction and at a distance d from the robot. At this instant in time the
direction at which the object lies as seen from the current position of the vehicle
and with respect to the external reference axis is ψ0 = 0 rad. ∆t later the vehicle
has traveled a distance of ∆drobot(= v∆t). Thus the object direction as seen from
the new position of the robot is now

ψ∆t = arctan

(
∆drobot

d

)

(4.12)
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Figure 4.10: Rate of change of obstacle or target bearing (here represented by the black
star) as the robot moves in a resting environment with constant movement direction.
On the left: The obstacle or target lies far ahead. Initially, the robot is at the position
indicated by t = 0. The direction at which the object is “seen” is ψA1. Later on the robot
is at the position indicated by t = ∆t. From this position the object is “seen” at direction
ψA2. Thus, in the time interval ∆t the rate of change of the object bearing is ∆ψA/∆t.
On the right: The obstacle or target is “seen” sideways. In the same interval of time the
rate of change of the object bearing is ∆ψB/∆t and is larger than in the previous case.

For small ∆drobot/d we can write:

ψ∆t ≈
ψ0 − ψ∆t

∆t
≈ v∆t

d
(4.13)

Therefore we can derive the maximal rate of shift of the fixed points as a function
of the vehicle’s velocity

ψ̇max ≈ ∆ψ

∆t
≈ v

d
(4.14)

This approximate description can be turn around to compute the desired path ve-
locity as a function of distance with ψ̇max as a design parameter, that can be tuned
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Figure 4.11: This figure illustrates the relationship between the maximal rate of change
of obstacle or target bearing and the vehicle’s path velocity, which occurs when the objects
are seen sideways.

to obtain good tracking. We compute the desired velocity separately for each of the
two constraints (i = tar or obs):

Vi = diψ̇max (4.15)

The desired velocities are imposed through a very simple dynamics (Bicho, Schöner,
1997)

dv

dt
= −cobs (v − Vobs) exp

[

−(v − Vobs)2

2σ2
v

]

−ctar (v − Vtar) exp

[

−(v − Vtar)2

2σ2
v

]

(4.16)

The strengths, cobs and ctar, are adjusted such that in the presence of strong obstacle
contributions the obstacle term dominates while in the absence of such contributions
the reverse holds. A systematic way to construct a function that indicates if ob-
stacle contributions are present, is to integrate the obstacle force-lets, from which a
potential function of the obstacle avoidance dynamics results:

U(φ) =
7∑

i=1

(

λiσ
2
i exp

[

−(φ − ψi)2

2σ2
i

]

− λiσ
2
i /
√

e

)

(4.17)

Positive values of this potential function indicate that the heading direction is in
a repulsion zone of sufficient strength, λi, so cobs > 0 and ctar = 0 is required.
Conversely, negative values of the potential indicate that the heading direction is
outside the repulsion range or repulsion is weak, so now cobs = 0 and ctar > 0 is
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Figure 4.12: The dashed line is a repulsive force-let, fobs. Its integral provides a potential
(solid thin line), U , which is maximal near the heading direction to be avoided, i.e the
resultant repeller. The thresholded potential (solid bold line), α, serves as an indicator
function of those intervals of the heading direction from which obstacle forces repel.

required. The transformation of levels of the potential to the strengths of the two
contributions to the velocity control makes use of a sigmoidal threshold function,

α(φ) = arctan[cU(φ)]/π (4.18)

ranging from −1/2 to 1/2 (see Figure 4.12). Finally we can write the following
functions for the strengths of the two velocity contributions:

cobs = cv,obs (1/2 + α (φ)) (4.19)

ctar = cv,tar (1/2 − α (φ)) (4.20)

At sufficiently sharp sigmoids (c sufficiently large) this leads to the required transi-
tion behavior. The parameters, cv,tar and cv,obs, determine the relaxation rate of the
velocity dynamics in the two cases when either the obstacle or the target constraints
dominate.

The following hierarchy of relaxation rates ensures that the system relaxes to the
attractors and that obstacle avoidance has precedence over the target contribution:

λtar ≪ cv,tar, λobs ≪ cv,obs, λtar ≪ λobs (4.21)

4.4 Implementation on Robodyn

The complete dynamic architecture was implemented and tested on the mobile plat-
form Robodyn.
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In the implementation, the dynamics of heading direction, path velocity and the
dead-reckoning equations are integrated numerically using the Euler method.

Sensory information is acquired once per computation cycle. The cycle time is
measured and is approximately 50 ms. As the time step must be smaller than the
fastest relaxation time on the system, this imposes minimal time scales on the entire
dynamical architecture. Thus the computational cycle time is the limiting factor for
determining the relaxation times of the dynamics in real time units and thus for the
overall speed at which the robot’s behavior evolves.

The rate of change of heading direction obtained from the dynamics of heading
direction (Equation 4.11) directly specifies the angular velocity, w, of the robot for
rotation around its center. This can be translated into the difference between left
and right wheel rotation speed. The path velocity, v, specifies the average rotation
speed of both wheels. Together, the rotation speeds of both wheels can be computed
and are sent as set point to the velocity servos of the two motors (see Section 3.3).

4.5 Experimental results

We first discuss a number of results demonstrating the properties of the path plan-
ning system, then the velocity control system, and finally we present some sample
trajectories of the vehicle in different scenarios.

4.5.1 Properties of the path planning dynamics

Decision making through bifurcations

The capability of the path planning system to make decisions is depicted in Fig-
ure 4.13, and discussed in more detail now. In the top Panel the robot faces two
obstacles that are sufficiently far apart to pass in between. In this case the corres-
ponding obstacle contributions to the vector field share little overlap. The resulting
obstacle avoidance dynamics has repellers corresponding separately to each obstruc-
tion, and an attractor in between, which attracts the robot to pass between the
obstacles. The target contribution also erects an attractor at the direction pointing
in between the two obstacles. Obstacle and target contributions “cooperate” and
give rise to a vector field with a strong attractor at that direction. Behaviorally this
means that the behavior corresponding to proceed straight to the target becomes
more stable, or put in another way, the decision to pass through the obstacles is
reinforced. In the bottom Panel, the robot faces again two obstacles but this time
they are positioned too close together for the robot to pass in between them. In
the illustrated situation four obstructions (i.e. four virtual obstacles) are detected:
two corresponding to the left obstacle while the other two to the right obstacle.
The repulsive force-lets from these four virtual obstacles are sufficiently overlap-
ping. Their superposition corresponds, therefore, to averaging among the repulsive
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Figure 4.13: Demonstration of decision making by the path planning dynamics: The
robot is placed at a distance 20 cm from the obstacles and facing them. The target lies
behind the obstacles. The two pictures in the left column illustrate two situations: In the
first (top of this column) the separation between the two obstacles is larger then the robot’s
size, while in the second (bottom of the column) the opposite holds. For each situation
two plots are presented. The first plot shows the individual repulsive force-lets(grey lines)
and their superposition (solid bold line). The second plot exhibits the resultant obstacles
contribution (dashed line), target contribution (doted line) and the resultant dynamics of
the heading direction (solid bold line). When the separation between the two obstacles is
larger than the vehicle size the path planning dynamics forms an attractor at the direction
pointing toward the passage. Conversely, the path planning dynamics erects a repeller at
this direction when the distance between the obstacles is not sufficient for the robot to
pass in between.
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force-lets, which leads to a single repeller in the obstacle avoidance dynamics, posi-
tioned at their average location. These two obstacles (or four virtual obstacles) are
thus behaviorally modeled as just one obstacle. The target contribution erects an
attractor at that direction. However, since the repeller from the obstacle constraints
is stronger than the attractor from the target constraint the resulting vector field
keeps a repeller at that direction. Behaviorally this corresponds to the decision of
steering away. Note that the resultant planning dynamics has two attractors, one on
each side of the repeller, which reflect the two possibilities, turning right or left. If
the robot turns left or right depends on which basin of attraction the heading direc-
tion is in. These decisions in the planning dynamics were investigated systematically
for a continuum of distance values between obstacles ranging from 80 cm down to 0
cm when the robot is at a distance of 20 cm from the obstacles. The resulting fixed
points are plotted in Figure 4.14 and their stability is indicated. When the obsta-

Figure 4.14: Bifurcation diagram of the path planning dynamics when the robot is at a
distance of 20 cm from the obstacles. Stable and unstable fixed points are indicated by
circles and squares, respectively. Pitch-fork bifurcation: The planning dynamics has an
attractor at φ = π/2 while the distance between obstacles is larger than 50 cm. For a
distance value smaller than 50 cm this attractor becomes unstable (i.e. a repeller) and
two new attractors appear. The value 50 cm is the bifurcation value and is the distance
below which the vehicle (with size 45 cm) cannot pass between the two obstacles.

cles are 80 cm apart the planning dynamics exhibits an attractor at the direction in
between the two obstacles. As the distance between obstacles is decreased a critical
value is reached where a bifurcation in the planning dynamics takes place. This
attractor becomes unstable and two new attractors appear (pitch-fork bifurcation1).
The bifurcation point is at 50 cm and is the distance below which the robot (with
size 45 cm) fails to pass physically between the two obstacles. Behaviorally, this bi-

1A bifurcation is called pitch-fork bifurcation when a stable fixed point becomes unstable and
casts off two stable fixed points.
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furcation leads to a qualitative change, i.e. a decision making, in the planned path.
For distances larger than 50 cm the robot passes straight through the obstacles to
reach the target while for smaller distances it turns around.

Decision making through bifurcations generated by the moving vehicle
itself

The bifurcation we have just described was induced by changing the environment
as sensed from the sensors, while the robot’s position and orientation were kept fix.
Now we show results where planning decisions arise during actual motion.

In Figure 4.15 the time course of the robot’s position and corresponding planning
dynamics, as the robot moves from an initial position toward the target location,
is shown. The robot faces two obstacles that are separated by a distance (20 cm)
smaller than the robot diameter. The target location lies behind the obstacles.

Initially (see Panel A) no obstructions are sensed by the infra-red sensors, thus
the obstacle contributions to the vector field of the planning dynamics are null. Only
the target contributes, the planning dynamics has therefore an attractor at the di-
rection at which the target lies, as seen from the current position. The heading
direction is relaxed in this attractor. As the robot approaches there is a distance for
which it starts to detect obstructions (Panel B). The obstacle avoidance dynamics
erects a repeller, at the average direction in between the two obstacles (π/2 rad),
which is weakly repulsive since the obstacles are still far away. The resultant vec-
tor field maintains the attractor at about the same position although its strength
of attraction is weakened. Behaviorally, the robot moves straight ahead. As the
robot continues approaching the obstacles an instability takes place (Panel C). This
because as the sensed distances to obstructions decrease the strength of the corres-
ponding repulsive force-lets increase. Thus the strength of the repeller erected by
the obstacle avoidance dynamics increases and eventually overrides the attractor,
leaving a repeller there and two atractors, one on each side which correspond to
the two possibilities, turning to the right or to the left. A bifurcation (subcritical
pitch-fork bifurcation) in the path planning dynamics has taken place. The system
has made a decision (no path is possible through the obstacles). As the distance
decreases even further the strength of repulsion of this new repeller increases (Panel
D) and strongly repels the heading direction of the robot from the direction it speci-
fies. The robot circumnavigates then the entire area in which obstructions have been
detected (Panel E). When it reaches the position indicated in Panel E another bi-
furcation takes place. An attractor replaces the repeller and the planning dynamics
pulls henceforth the robot to move toward the target.

If there is no opening between the obstacles, so that a single broad obstruction
is encountered (Figure 4.16), the same bifurcations take place and the robot follows
a qualitatively similar path. A new challenge is posed however. When too many
obstacle contributions are simultaneously activated, spurious attractors could hypo-
thetically arise: the pull to the left exerted by one contribution could be cancelled by
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Figure 4.15: Evolution in time of the robot’s position and corresponding heading direc-
tion dynamics as the robot moves toward the target. Initially the robot is positioned at
coordinates (0, 0) m facing two obstacles, which are separated by 20 cm (smaller than
the vehicles size). The target position is at (2.9, 0.0) m. Each picture in the left column
shows the robot position at a certain instant of time. For each robot position two plots
are presented. The first plot shows the individual repulsive force-lets (grey lines) and their
superposition (dashed line). The second plot illustrates the resultant obstacle contribu-
tions (dashed line), the target contribution (doted line) and their sum (solid bold line).
The arrow in the plots indicates the current value of the heading direction. The robot
moves ahead, toward the target, until it detects the obstacles. Since the spacing between
the obstacles is small the robot circumnavigates then both obstacles, through their right,
and eventually reaches the target(cont.).
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Figure 4.15: Continued.

the pull to the right of a next contribution. The figure demonstrates, however, that
even when multiple contributions are simultaneously activated, spurious attractors
need not arise.
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Figure 4.16: This figure is elaborated as explained in the Figure 4.15. The overture
between the obstacles depicted in that figure is here closed. The robot follows a qual-
itative similar path. It circumnavigates the long obstacle and successfully reaches the
target(cont.).
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Figure 4.16: Continued.

When the separation between the obstacles is sufficiently large the path fol-
lowed is qualitatively different. This is illustrated in Figure 4.17 where the overture
between the two obstacles was made just slightly larger (55 cm) than the robot size.
The time course of the robot position and corresponding planning dynamics is also
depicted. While the distance of the robot to the obstacles is larger than the range
of detection of the infra-red sensors no obstructions are detected and the resultant
vector field has an attractor at the direction pointing toward the target (Panel A).
The robot moves thus straight ahead. When the robot arrives at the position indi-
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cated in Panel B it detects two obstructions. At this point the angular separation

Figure 4.17: The obstacles depicted in Figure 4.15 are now placed at a distance of 55 cm
which is larger than the robot’s size. The qualitative path is therefore different. Here the
path is more direct. The robot passes through the overture in between the obstacles to
reach the target(cont.).

between the two obstructions, as detected from the current position of the robot, is
relatively small. The corresponding repulsive force-lets are sufficiently overlapping
and therefore these contributions are linearly dependent. Their superposition pro-
duces a repeller at their average angular distance. This repeller “competes” with
the attractor from the target dynamics. Because the strength of the attractor is
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Figure 4.17: Continued.

stronger than the repulsion of the repeller the resultant vector field maintains an
attractor, although less stable, at the direction at which the target is seen. The
robot continues driving ahead. As the robot approaches the obstacles their angular
separation, as detected from the current position of the robot, increases. The indi-
vidual repulsive force-lets become less overlapping. At a certain distance a phase
transition in the obstacle avoidance dynamics takes place. The sum of the repulsive
contributions now forms an attractor at that direction (Panel C). From this point
on, obstacle and target contributions cooperate and the resultant attractor is thus
more stable. In spite of the fact that the obstacle dynamics went through a phase
transition the complete vector field always produced a continuous varying attractor
solution, which smoothly tuned the robot movement through the narrow passage
toward the target.

Stability

We have just seen that as the vehicle moves the directions to the obstacles and the
target in the world change, thus the resulting attractor of the planning dynamics
shifts. Figure 4.18 shows, for the three examples presented above, how the time
courses of the heading direction track the time courses of the attractor solutions of
the heading direction dynamics. In each case, the system tracks one of the attractors
closely, except for those moments in time, when a bifurcation occurs, and some time
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is needed to relax to the nearest new attractor. These results demonstrate that the
complete dynamic planning system is stably coupled in closed loop to the sensory
information.

Figure 4.18: These three plots show the time course of the attractors and heading direc-
tion for each of the paths shown in Figures 4.15, 4.16 and 4.17 respectively. The attractors
are represented by circles, crosses and squares. The color of these symbols gives informa-
tion about the corresponding strength of attraction of the attractors they represent: The
darker they are the more stable the attractors are. The time course of the heading direction
is the black solid line.

4.5.2 Velocity control

To maintain the system stable, i.e. in or near an attractor, we guarantee that the
vehicle drives sufficiently slow so that the rate of shift of the attractors occurs at a
slower time scale than the time scale of the path planning dynamics. Figure 4.19
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illustrates the path velocity dynamics as the sensed world changes.

Figure 4.19: Evolution in time of the robot’s position and velocity dynamics as the robot
moves toward the target for the situation illustrated in Figure 4.16. Each picture in the left
column shows the robot position at a certain instant of time. For each robot position two
plots are presented. The first plot shows the resultant obstacle contributions Fobs (dashed
line), the corresponding potential U (solid thin line) and thresholded potential α (solid
bold line). The arrow indicates the current value of heading direction. The second plot
depicts the velocity dynamics and the arrow indicates the vehicle’s current velocity. The
trajectory is depicted as a sequence of points. The time interval between two consecutive
points of the trajectory is constant. Thus the plotted trajectory directly gives a perception
of the robot’s path velocity: The closer the points are the smaller the velocity is (cont.).
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Figure 4.19: Continued.

Panel A shows that when no obstructions are detected (indicated by negative
or zero α(φ) at the current heading direction) the robot velocity is stabilized by
an attractor, which is set proportional to the distance to the target, according to
the target constraint imposed by Equation 4.15. Conversely when obstructions are
detected (as illustrated in Panels B and C), α(φ) is positive at the current heading
direction, the velocity dynamics is governed then by an attractor whose value is
proportional to the minimal sensed distance to the obstructions if this minimal
distance is larger than 25 cm, otherwise its value is set proportional to dmin − 20
cm. This way the obstacle constraints are satisfied. Panel D shows what happens
in a situation where obstructions are detected but the robot’s heading direction is
outside the repulsion zone created by the obstructions (α(φ) negative). In this case
the velocity dynamics is dominated by the target constraint as we have just explained
above. The strengths of the attractors, erected by target or obstacle contributions
for the velocity dynamics, are adjusted according to Equation 4.21.

Again, as the vehicle moves the attractor for the path velocity dynamics, either
erected by the target or obstacle constraints, shifts. The system is able to follow the
attractor, however. This is depicted in figure 4.20.

4.5.3 Sample trajectories in complex environments

Figures 4.21 to 4.24 show sample trajectories of the robot as recorded by the dead-
reckoned robot position. The initial position of the vehicle is always considered the
referential point with respect to which the target coordinates (Xtarget, Ytarget) are
given. The vehicle stops running when the estimated distance to the center of the
vehicle to the target is equal to 30 cm. The error in this estimated distance and the
real distance varies between 10 and 20 cm depending on the length of the overall
path.

In the run depicted in Figure 4.21 the robot is initially placed inside a box.
The target position lies outside at coordinates (Xtarget, Ytarget) = (1.5,−1.5) m. As
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Figure 4.20: Time course of the attractor from the path velocity dynamics and robot’s
velocity along the path depicted in Figure 4.16. The attractor is represented by a cir-
cle. The color gives information about its strength of attraction. Darker color indicates
stronger attractor. The time course of the path velocity is the black solid line.

one can see, the robot first turns toward the target direction and circumnavigates
the detected obstacles that constitute the walls. It then finds the exit and continues
moving toward the target until it is inside the neighborhood of the target coordinates.

Figure 4.21: A sample trajectory of the robot as recorded by the dead-reckoned position.
Robot initial position is considered the reference point. The target is placed at a position
(1.5,−1.5) m with respect the reference point.

The two runs depicted in Figure 4.22 demonstrate the flexibility of the path gen-
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erating system. The results reported in subsection 4.5.1 have also demonstrated this
property, of course, but here the environment is more complex. Initially the robot
is positioned outside the box, in the bottom right corner. The target coordinates
fall inside the box ((Xtarget, Ytarget) = (−2, 1.8) m). In the first run (top Panel) the
robot circumnavigates the obstacles taking the top direction. It finds its way into
the box while successfully avoiding the walls and finally ends up stopping near the
target position. In the second run (bottom Panel) three obstacles indicated by A,
have been placed in front of the robot with respect to its departure position. From
this position the additional obstacles are not detectable, since they have been placed
at a distance larger then the sensors range. Initially, the robot attempts to reach
the target through the top direction as before. However, it detects that this way is a
dead-end. Therefore, it changes the direction of driving and once again successfully
reaches the target.

A longer run is illustrated in Figure 4.23. Initially, the robot is positioned in
the corridor of our lab. The target position lies inside a box in one of the offices,
(Xtarget, Ytarget) = (−3.2, 3.0) m. The robot drives along the corridor. Then, based on
the target contribution and helped by obstacle avoidance, the robot moves through
the office door. It circumnavigates the obstacles and eventually reaches the entrance
of the box. Finally, it stops near the target position.

All the results presented till now were obtained using distance measures provided
by infra-red sensors only, because it makes the computation cycle faster and thus
larger path velocities are possible. We end this section by illustrating the simulta-
neous use of infra-red sensors and sonars and the concomitant implications in the
generated path.

When infra-red sensors are used together with the sonars, sensory information
is acquired in the following way: The signal of each infra-red sensor is read only
once per each computation cycle as when they are used in isolation. In each com-
putation cycle five measures for each sonar are taken. In this case the cycle time
is approximately 70 ms. The distance estimate provided by a sonar is then taken
as the average among the five measures. This way errors due to specular reflexions
are reduced to a large extend. The “sensory fusion” between infra-red sensors and
sonars is performed through a very simple algorithm. In the overlap distances inter-
val (e.g from 45 to 60 cm) the minimum distance is taken as the estimated distance
to a detected obstruction.

Figure 4.24 illustrates how sensors distance range affect the generated path.
This figure shows two runs executed in the same scenario. The target position is at
coordinates (Xtarget, Ytarget) = (−1.0, 2.2) m with respect to the vehicle’s departure
position. In the first run only infra-red sensors have been used to measure distances
to obstructions. The maximal distance at which obstructions can be detected is 60
cm. Initially, the robot turns left in order to avoid the obstacles, indicated by A,
which lie on its right side. Then the robot attempts to reach the target through the
left direction. However it detects that this way is a dead-end (indicated by B). It
changes therefore its direction of driving and successfully reaches the target position.
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Figure 4.22: Flexibility of the path generating system is illustrated here. Top: the robot
is positioned initially at the lower left corner as illustrated. The target lies inside the box
at coordinates (−2, 1.8)m with respect to the departure position. The generated trajectory
that brought the system from its initial position to the target location is depicted. Bottom:
Here additional obstacles have been added to the configuration in a form that blocks the
previous path. The resultant trajectory takes a different course.

In the second run (depicted on the right side of the figure) both infra-red sensors
and sonars are used. The maximal distance at which obstructions can be detected
is now 175 cm. The robot starts detecting obstacles for larger distances and as a
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Figure 4.23: Another and longer trajectory is depicted here. The robot is initially placed
at the corridor. The target location is inside an office at coordinates (−3.2, 3)m relative
to the departure position.

consequence it can anticipate which direction to move. The dead-end is detected
earlier.

As we can see from the results the dynamic path planning system leads to smooth
collision free trajectories to the target. The result is valid for both types of sensors.

4.6 Conclusion

In this chapter we have demonstrated that the dynamic approach to path generation
can be used even in the absence of veridical representations of obstacles as objects
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Figure 4.24: Two sample trajectories of the vehicle as recorded by the dead-reckoned
position are depicted. The target is placed at coordinates (−1.0, 2.2) m with respect
to the robot’s initial position. Left: Only infra-red sensors have been used to measure
distances to obstructions. Right: Distance measures to obstructions have been provided
by infra-red sensors and sonars.

in the world. The information from distance sensors is directly used to define con-
tributions to a dynamical system of path planning. Heuristically, the sum over such
contributions has attractors that specify collision free directions toward the target.
Target and obstacle constraints also define contributions to a dynamical system of
path velocity. The generated trajectories are smooth. Flexibility is achieved in that
as the sensed environment changes, the system may change its planning solution
continuously, but also discontinuously.

Because this dynamic path generation system is a local form of path planning
one cannot guarantee that the trajectories toward a target are optimal with respect
to the overall traveled path.

The proposed solution involves explicit design and all system parameters can
be specified rationally based on the qualitative theory of dynamical systems and
bifurcation theory. The system never entered into spurious attractors.

Although we did not show here it for technical reasons, the dynamic architecture
works for dynamic environments, as long as the rate of change of the environment
is slow compared with the relaxation time of the planning dynamics. No concep-
tual difference exists between stationary and moving obstacle avoidance. Avoiding
moving obstacles is shown on a video demonstration.

Since motion planning is just a piece in the way robots interact with their world,
a next direction is to integrate this motion planning system with the related problem
of target detection and localization.
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[14] E Bicho and G Schöner. The dynamic approach to autonomous robotics
demonstrated on a low-level vehicle platform. Robotics and autonomous sys-
tems, 21:23–35, 1997a.
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niques de l’Ingénieur, R7(850):1–18, 1999.

[83] E Rimon and D E Koditschek. Exact robot navigation using artificial po-
tential functions. IEEE Transactions on Robotics and Automation, 8(5):501–
518, 1992.

[84] S J Ross, J M Daida, C M Doan, T F B Begey, and J McClain.
Variations in evolution of subsumption architectures using genetic program-
ming: The wall following robot revisited. In JR Koza, D E Goldberg, D B
Fogel, and Riolo R L, editors, Proceedings of the First Annual Conference,
July 1996.

[85] E R Scheinerman. Invitation to Dynamical Systems. Prentice Hall, 1996.
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[87] G Schöner and M Dose. A dynamical systems approach to task-level sys-
tem integration used to plan and control autonomous vehicle motion. Robotics
and Autonomous Systems, 10:253–267, 1992.
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