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Abstract

We present a neural dynamic process model of an intentional
agent that carries out compositionally structured action plans
in a simulated robotic environment. The model is inspired
by proposals for a shared neural and structural basis of lan-
guage and action (Pastra & Aloimonos, 2012). Building on
neural process accounts of intentionality we propose a neural
representation of the conceptual structure of actions at a sym-
bolic level. The conceptual structure binds actions to objects
at which they are directed. In addition, it captures the com-
positional structure of action sequences in an action plan by
representing sequential order between elementary actions. We
show how such a neural system can steer motor behavior to-
ward objects by forming neural attractor states that interface
with lower-level motor representations, perceptual systems and
scene working memory. Selection decisions in the conceptual
structure enables the generation of action sequences that ad-
heres to a memorized action plan.

Keywords: neural process model; dynamic field theory; action
grammar; intention; action and language; autonomous robot

Introduction

Following instructions, or planning actions ourselves to reach
goals often requires that we generate novel sequences of ac-
tions that we never before performed in exactly the same or-
der or directed at precisely the same objects. The human fac-
ulty for intentional action comprises this remarkable ability
to form a practically unlimited set of novel actions by flex-
ibly recombining previously learned motor behaviors. Even
rather global goals may thus be ultimately achieved by com-
bining the limited set of movements available to the human
body. This unlimited use of limited means has led researchers
to compare the structural organization of human action to that
of language. Similarities in their compositional structure and
neurological findings have motivated the hypothesis that the
syntax governing language and action might originate from
a shared neural basis (Pastra & Aloimonos, 2012). In this
perspective, actions are represented by a minimalist action
grammar in which novel actions are composed from atomic
symbols through sequences of merge operations. These gen-
erate hierarchical syntax trees that specify action types, action
arguments (such as tools and objects) and the sequential order
of actions. Whether a shared neural substrate is the origin of
structural similarities between action and language is still un-
der discussion (Zaccarella, Papitto, & Friederici, 2021). Such
a representational framework does, however, offer a parsimo-
nious account of the structured and flexible organization of

human action. It would enable an agent to represent novel
action plans that generalize beyond any specific instances it
may have learned or stored earlier.

How could a neural system implement such a representa-
tional system and how could such an implementation drive
intentional action? To address these questions we propose a
neural process account of intentional action that enables an
agent to autonomously direct action at objects in its envi-
ronment (Tekiilve & Schoner, 2019). Two key problems are
addressed. First, we propose a neural representation of the
conceptual structure of an action at a symbolic level which
binds the action to the objects at which it is directed (see the
top panel of Figure 1 for an illustration). This makes use
of earlier work on neural binding through a shared “index”
dimension (Sabinasz, Richter, & Schoner, 2023). We show
how this neural implementation of a structured representation
may guide the embodied realization of the intentional action
directed at objects. Second, we show how a neural repre-
sentation of the sequential order of elementary actions in a
“dependency graph” may capture the compositional structure
of actions described in syntax trees. We demonstrate how this
representation may steer sequences of actions toward achiev-
ing goals.

As a proof of concept, we present a neural dynamic process
model that controls a simulated robot arm in a table-top en-
vironment that carries out pick and place actions. The model
represents action intentions as action phrases, that is, concep-
tual structures that bind action concepts to object concepts in
different roles. The sequential dependencies between actions
are also represented at this conceptual level. This concep-
tual structure of action plans takes the form of neural attrac-
tor states that form a working memory and can then guide
the agent’s motor behavior by interfacing with lower-level
motor representations, perceptual systems and scene work-
ing memory. As an integrative neural process account, the
model is continuously coupled to the robot’s sensory-motor
surface and entails interacting sub-networks that control the
entire sensory-motor loop.

The model is based on Dynamic Field Theory (DFT;
Schoner, Spencer, and DFT Research Group (2016)), a math-
ematical modelling framework which utilizes neural dynamic
equations (Amari, 1977) to model the activation dynamics
of neuron populations. Through their forward connectivity
to the sensory or motor surfaces, these populations repre-
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sent feature dimensions or motor parameters, forming low-
dimensional dynamic neural fields. These fields are formal-
ized as dynamical systems that form stable attractor states
shaped by recurrent connectivity within the field, locally ex-
citatory and inhibitory over larger distances. The attractors
emerging from this connectivity are localized peaks of activa-
tion that are stable against noise and may remain stable as the
localized input that induced them is weakened. These peaks
of activation are the basic units of representation in DFT. The
interplay of internal coupling within a field and external in-
puts into the field determine a field’s dynamic regime. Strong
long range inhibition with moderate local excitation leads to a
selective regime that allows only one stable peak to be active
at a time. Strong local excitation and mid-range inhibition
leads to a self-stabilized regime in which peaks remain stable
even after input is removed. Changes in external input lead to
instabilities in which peaks form (detection instability) or de-
cay (reverse detection instability) depending on the dynamics
of the field.

In DFT, cognitive processes emerge as neural fields that are
coupled to sensory-motor surfaces go through various insta-
bilities as their activation develops in continuous time. More
complex cognitive processes are modeled by connecting neu-
ral fields into larger architectures. The ultimate meaning
of neural fields in these architectures is determined by their
tuning to features of the sensory-motor surface and by their
synaptic coupling to other fields in the architecture.

Scenario and Model

For demonstration purposes we chose a scenario in which
a robotic agent is tasked with performing a sequence of ac-
tions in the domain of simple pick and place behaviors. This
domain is simple enough to still allow for easy interpreta-
tion of the meaning of action concepts and their grounding
processes, while at the same time requiring the system to
solve a number of challenges for object oriented behavior.
Specifically, the agent requires a means to focus attention on
and identify searched objects. It must build a scene working
memory that possesses a mechanism for retrieving target ob-
jects from memory using conceptual object descriptions. And
it must manage to organize these capabilities into sequences
of pick and place behaviors toward objects.

The architecture was implemented in Cedar (Lomp,
Richter, Zibner, & Schoner, 2016) and is coupled to a robotic
simulation environment implemented in Webots (Michel,
2004). The agent is a robot arm equipped with an adjustable
LIDAR camera. It is placed in a table-top environment that
contains objects of different shapes and colors. Input to the
neural field architecture consists of the LIDAR color and
depth image, as well as the current camera orientation and
the end-effector status. The robotic simulation receives com-
mands from the architecture in the form of target end-effector
position, gripper status and target camera orientation.

The following sections describe the function of the differ-
ent sub-networks that comprise the model. Because of space

constraints we do not give a complete mechanistic descrip-
tion. Instead we give a brief description of the function and
role of each part with regard to those aspects that are most im-
portant for understanding how the model manages to ground
compositional action plans. As an integrative model the dif-
ferent sub-networks are based on previous publications to
which we refer if the reader seeks a more detailed mechanistic
understanding. The only exception to this is the description
of the conceptual structure where this model innovates on the
representation of sequential information in the domain of ac-
tion, which requires a somewhat more detailed discussion on
its dynamics.

Conceptual Structure The conceptual structure comprises
the neural substrate that represents the agents’ intentions and
controls the execution of an action plan. As discussed above,
we account for their compositional structure by represent-
ing action intentions as action phrases, which we accomplish
by utilizing the index binding mechanism in discrete neu-
ral fields that was proposed by Sabinasz et al. (2023) in the
domain of nested noun phrases. The index binding mech-
anism assumes that each concept node shares an index di-
mension that can be used to express concept combinations
(bindings). We use this mechanism to bind object concepts to
action concepts in different roles such that they match the se-
mantic argument structure of an action. We represent action
sequences by representing sequential dependencies between
action phrases. These dependencies enforce a partial topolog-
ical ordering of planned actions, which allows the expression
of precedence relations between actions, while still allowing
flexibility in the sequential order of non-dependent actions.

Fig. 1 depicts an exemplary action plan visualized as a
directed graph of syntax trees (A) and the corresponding rep-
resentation as an activation pattern in the conceptual structure
B).

The object concept field represents objects or locations
through binding of one or multiple object/relation concepts
to a unique object index. Analogously, action concepts are
bound to an action index, which serves as the binding agent
for an action phrase. Object representations are bound to an
action index by their semantic role of either target (AT) or
reference (AR). For example, the concepts bound to Al in
Fig. 1B correspond to the phrase [Transport] [Blue Donut]
[on Top of Green Plate] in Fig. 1A. Sequential dependencies
are represented in the dependency relation field. This field
implements a directive binding, in which each row represents
the successor action of the corresponding action index. The
O-row indicates the start and column-0 the end of an action
plan. In the example of Fig. 1 the dependency relations en-
code that action Al or A3 may be performed initially, while
A2 has to immediately follow Al and A4 follows A3.

The working memory representation of an action plan is
given as a sub-threshold activation pattern in the conceptual
structure. Neurons above threshold pass excitatory activation
along their shared index dimension, while projecting strong
inhibitory activation to neural nodes coding for other indices.
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Figure 1: Exemplary action plan represented as a directed

graph of syntax trees (A) and the corresponding representa-

tion in the conceptual structure (B). The contents of an active

action phrase are projected to the rest of the architecture (D)
through the interfacing concept production nodes (C).

This puts the conceptual structure into a selective regime in
which action phrases form attractor states that inhibit com-
peting action phrases from going through the detection insta-
bility. The dependency relation field passes activation along
the action index dimensions, pushing actions that should be
performed next close to threshold, giving them a selective ad-
vantage. The contents of an active action phrase are projected
to the rest of the architecture (Fig. 1D) through the interfacing
concept production nodes (Fig. 1C).

Attractor states are destabilized, when other parts of the
model signal successful execution of an action or the percep-
tion of a searched object. The success signal of a performed
action inhibits its corresponding column index and boosts its
row index in the dependency relation field (Action CoS nodes
in Fig. 1C). After each action, the dependency graph steps
through its encoded dependencies, thus only boosting action
phrases which are currently available according to the ac-
tion plan. A match signal coming from the perception sub-
network destabilizes the corresponding object representation,
which facilitates the selection and subsequent search for a
new object.

Perception and Attention The search for an object align-
ing with a conceptual description is crucial to successfully
guide interactions with the environment. To facilitate this
procedure, we integrated a neural process model of scene
representation and categorical visual search within natural
scenes (Grieben & Schoner, 2022). This model was expanded
to fulfill the demands of a robotic setting (Fig. 2 Perception
& Attention). In particular, we incorporated the capability to
generate saccades in a three-dimensional environment. Each

saccade rotates the camera to bring an object into the atten-
tional foreground. Saccade selections are based on a priority
map, that receives bottom-up input from a saliency map and is
modulated by top-down guidance from memory and concep-
tual feature cues. The model projects the attended position,
the detected color, shape and height feature values as output
to other sub-networks.

Figure 2: Overview of the neural field model.

Scene Memory Successful interaction with the environ-
ment requires a scene representation that maintains scene
information in the absence of perceptual input, and can be
updated online when perceptual input is available. Here,
scene memory is based on space-feature maps that are bound
through space (Grieben & Schoner, 2022) and coupled to
a change detection mechanism based on Johnson, Spencer,
Luck, and Schoner (2009). The change detection fields com-
mit new space-feature information to memory, if a feature at
a currently attended position does not match the current scene
representation. Goal-oriented behavior additionally requires
that conceptual object descriptions are anchored in the envi-
ronment. This is achieved by the index memory, which binds
a conceptual object description to the location of a matching
object in the environment. A searched position is commit-
ted to index memory, when the feature match sub-network
(Grieben & Schoner, 2022) detects a match between the con-
ceptual guidance cues and the features in scene memory at the
attended location. (Fig. 2 Scene Memory)

To ground relational concepts, the architecture uses coordi-
nate transforms of spatial templates that can be seen as rela-
tional operators in spatial language (Richter, Lins, & Schoner,
2021). The conceptual description of a location activates a
corresponding spatial template, which is used to commit a
position in a certain relation to the attended object to mem-
ory. (Fig. 2 Coordinate Transform)

Motor Representations The motor representation sub-
network contains a set of primitive, hierarchically organized
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motor representations, that enable an agent to act based on
conceptual action intentions. For this, they translate an action
phrase into a sequence of movement primitives. Our imple-
mentation of motor representations is based on Richter, San-
damirskaya, and Schoner (2012). Each action concept con-
nects to an elementary behavior (EB). The individual EBs
are organized into hierarchical sequences. The Transport se-
quence consists of the EBs Grab followed by Place, which
in turn first activate Reach followed by Open/Close. Reach,
Open and Close are behavioral primitives that directly project
onto the sensory-motor surface. Target objects are provided
as arguments by the conceptual structure. Movement primi-
tives recall spatial locations of objects from scene memory to
guide arm movements. A Condition of Satisfaction (CoS) sig-
nal is send to the conceptual structure once the active inten-
tion is completed. Together this structure manages to decom-
pose higher-level actions into simple primitives, while con-
serving specified movement targets through argument passing
between. (Fig. 2 Motor Representations)

Summary Given the above explanation of the individual
sub-components, the overall flow of the model can be sum-
marized as follows. Starting from the top-left of Fig. 2, se-
lection decisions in the conceptual structure lead to the ac-
tivation of an action phrase representing the agents current
intention. Active object concepts pass activation to the per-
ception sub-network and scene memory where they are used
to provide feature and memory cues to the perception sub-
network (lower-right). The perception sub-network generates
saccades based on object salience and top-down cues which
enables the model to search for objects. Once a searched ob-
ject is found its conceptual representation is anchored to its
location by storing its position in index memory (top-right).
At the same time, the active action concept activates its cor-
responding motor representation EB which in turn initiates
the associated sequence of primitives (lower-left). Movement
starts when movement primitives manage to recall the target
object position from index memory. The completion of an
action destabilizes its attractor state in the conceptual struc-
ture, leading to a new selection decision in accordance with
the memorized plan. In the next section we demonstrate how
this enables the model ground partially ordered sequences of
structured actions.

Results

We illustrate how the agent robot performs the action plan de-
picted in Fig. 1. The plan consists of two separate branches
that may be flexibly executed in either order. Within each
branch, the temporal order of the actions must be preserved.
Objects in the environment were chosen to demonstrate how
the model can successfully locate target objects among mul-
tiple distractors, and how a located object can be utilized in
different action phrases while preserving object identity. Fig-
ures 3 and 4 plot activation snapshots of selected fields and
nodes of the conceptual structure and the grounding architec-
ture over the time course of the performance. We focus our

description on how intentions are selected and maintained at
the conceptual level, how they guide attention and motor be-
havior and how the conceptual structure generates ordered se-
quences of intentions.

Selecting first action The performance starts with the se-
lection of an action phrase. The given action plan allows the
freedom to choose between A/ and A3. At time # the de-
pendency relation (DR) field projects sub-threshold input to
the action concept (AC), action target (AT) and action refer-
ence (AR) fields bringing the nodes bound to A7 and A3 close
to threshold. This facilitates a selection decision, in which
Al and A3 compete for reaching supra-threshold activation.
At time ¢, action A/ is already selected due to noise. The
bidirectional coupling between nodes in the conceptual struc-
ture stabilizes this selection decision by suppressing nodes
of other action indices. The active action concept Transport
then activates the corresponding motor representation that or-
ganizes the sequential activation of a pick and place action.
Competition in the object concept (OC) field has first led to
the selection of the target object blue donut. The selected ob-
ject concepts guide visual search by providing guidance cues
to the visual search sub-network. (¢ in Fig. 3)

Performance of first action In Fig. 4 at time #; we can
see that the top-down guidance cue has already led a saccade
to attentionally select the blue donut. The attended shape
(AS) and attended color (AC) fields depict classification
decisions of the visual search sub-network. At #; they display
the correct classification decisions of blue and donut. After
its position was stored in scene memory, the Reach motor
representation recalls its position from index memory, which
guides the robot arm to reach for the blue donut. (t; in
Fig. 4) By 13, the detection of the searched blue donut
leads to the destabilization of OI (blue donut) in the OC
field. This is followed by the subsequent selection of the
action reference O2 (green plate) (OC field at #3 in Fig. 3).
By the same mechanism as explained above, the guided
visual search enables the model to find the green plate
and subsequently place the blue donut on top of it, which
successfully completes the first action phrase A/ (t3 in Fig. 4).

Sequential selection of actions After completion, action
phrase A/ is destabilized in the conceptual structure by in-
hibition of the A/ column and boosting the A/ row in the DR
field. Through this mechanism, the conceptual structure steps
through the encoded action plan, as now action phrase A2 be-
comes a stable attractor state (4 in Fig. 3). The performance
of A2 is analogous to A!. (14, t5 and t5 in Fig. 3 and 4)

Switching between branches The completion of action
phrase A2 signals the end of the first branch of the action
plan. This can be seen at time 77 in the DR field of Fig. 3.
The boost along the A2 row coming from the CoS-signal ac-
tivates the 0-index as its successor, which in turn signals the
return to the beginning of the dependency graph by boosting

5000



GR 02 03 02 03 02 3

(1] W] [T mel T ' el

O,
N
Ol
sy

7
7
7
7

(Tr] o]

Q

=~

75
i
o
Q

>|
i‘h

2 04 02
[Tr]

04

) )
o]

[PI]

[
[-He

Q
Q
Q

-

(PIL 1]

DR

EEECH

7
K

0 AL A2 A3 A4

AC

l]
1]
d
4
A
U
L

Lo Re Op CI bi Pl T Lo Re Op CI PI Pl Tr Lo Re Op CI bi Pl 1Tr

AT

' X faa s

G102 03 04 05 06 07 G1 02 O3 04 05 06 07 G1 02 O3 04 05 06 07

AR

G1 02 03 G4 05 06 07

ocC

Transport
Pick Up 1
Place 1

Reach 1

-
L]
N
-

Open 4

Close 1

0 AL A2 A3 A4

Lo Re Op CI Pi Pl Tr

G1 G2 03 04 05 06 07

i wi

G1 G2 G3 G4 G5 06 07

0 AL A2 A3 A4 0 AL A2 A3 A4

,

Lo Re Op CI bi Pl T

Lo Re Op CI Pi PI 1Tt Lo Re Op CI Pi Pl Tr o Re Op CI B Pl Tr

I
-
|

61 02 O3 04 05 06 07 G1 G2 03 04 G5 06 07 G1 02 03 04 05 06 07 G1 G2 03 04 05 06 07

s

G1 62 03 G4 05 06 07 G1 G2 G3 G4 G5 G6 07 G1 G2 03 G4 05 06 07 G1 02 03 04 05 06 07

il
i |

—
I
_I
|
M

-10 =5 [ 5
activation colormap

Figure 3: Snapshots of the activation of selected fields of the conceptual structure and motor representations during perfor-
mance. Each column plots the level of activation at a shared time point. GR = Graph Representation, DR = Dependency
Relation, AC = Action Concept, AT = Action Target, AR = Action Reference, OC = Object Concept

the O-row. Because A/ is still inhibited from the previous in-
hibition, A3 wins the next selection decision.

Grounding relation concepts The performance of action
phrases A3 and A4 is analogous to that of A/ and A2. Action
A4 includes the relational concept right of green plate (06)
as part of its action reference. The bound relation concept
activates a corresponding relation template that is part of the
coordinate transform sub-network (Fig. 2). The coordinate
transform commits a location to the right of the green plate
to index memory, from where it can be recalled. This enables
the robot to place the banana (OS5) to the right of the green
plate. (t; and g in Fig. 3 and 4)

End of plan At time #9, the conceptual structure returned to
the beginning of the dependency graph. Because A/ and A3
are still inhibited from column inhibition, no other action is
selected. The plan is completed and the scene is re-arranged
as intended. (f9 in Fig. 3)

Discussion

Previous work has established how an “intentional agent”
may achieve goals acting in a (simulated) environment driven
entirely by neural dynamic processes formalized within DFT
(Tekiilve & Schoner, 2019). A first key innovation in this pa-
per is to endow such an agent with a structured conceptual
representation of planned actions and the objects at which

these actions are directed. This is neurally realized as sus-
tained activation of neural nodes that are coupled through
shared index dimensions (Sabinasz et al., 2023). This makes
it possible to flexibly bind the concepts for actions to con-
cepts for objects in different roles in the manner of “action
phrases” whose structure can be described by syntax trees.
The second key innovation is an explicit representation of
the sequential dependencies between actions, which makes it
possible to compose complex actions from more elementary
ones. The sensory-motor grounding of this conceptual struc-
ture consists of the agent “acting out” the represented actions
based on the connectivity of the neural nodes to lower-level
motor representations, perceptual systems, and scene work-
ing memory.

The representation of intentions as action phrases is par-
tially inspired by proposals that action and language share a
structural basis (Pastra & Aloimonos, 2012), so that a concep-
tual level representation of action intentions would have the
features of compositionality and productivity postulated for
human language. The notion of an action grammar is com-
patible with proposals of a hierarchical organization of the
different sub-systems involved in action generation (Grafton
& De C. Hamilton, 2007). Such hierarchical models typi-
cally entail high-level abstract action representations that are
iteratively translated into sequences of low-level behaviors,
ultimately generating executable movement patterns. Oth-
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ers have proposed similarly that action intentions may be ex-
pressed in a propositional format that interfaces with lower-
level sensory-motor systems to provide appropriate parame-
ters for non-propositional motor representations (Mylopoulos
& Pacherie, 2017; Shepherd, 2019).

Action plans represented in the conceptual structure could
be thought to originate from verbal instruction or from a pro-
cesses of deliberate planning that may involve knowledge (se-
mantic memory). The neural dynamic representation of ac-
tion intentions may specify the sequential order of actions by
explicitly representing the precedence relations between in-
dividual actions. This successor representation expresses a
partial ordering of actions, with some requisite sequential or-
dering while allowing for flexible sequential ordering among
certain branches. This representation is consistent with par-
tial ordering of human action in which some actions may be
opportunistically activated as a situation evolves. Coopmans,
Kaushik, and Martin (2023) argue that the structure of actions
that subserve a specific goal may best be characterized as par-
tially ordered sequences. In this view, a minimal encoding of
an action plan may be a dependency graph that captures all
possible orderings of actions leading to the same goal. How
exactly opportunistic reordering of actions would occur is not
entirely clear, at the moment.

Human behavior may be construed as outcome driven
(Papies & Barsalou, 2015). The model presented here does
not address how actions are directed toward overall goals or
desired outcomes. It may be a viable and interesting research

question to explore how structured representations of the type
proposed here could be used to conceptually represent de-
sired outcomes and the sequences of action phrases needed
to achieve these outcomes. This may require a link to the
sensory-motor grounding of actions, perhaps as mental simu-
lations rather than physically acts. Such action planning must
face challenges with regard to knowledge representation and
reasoning (Lake, Ullman, Tenenbaum, & Gershman, 2017).
We are also interested in how conceptual representations of
novel actions may arise through binding to previously learned
motor representations. Neural accounts of action selection
mechanisms may provide useful constraints for further devel-
opment on this matter (Stewart, Choo, & Eliasmith, 2010).
More generally, the question of how to design open-ended
semantically grounded language and reasoning systems has
been an ongoing domain of research in the field of cognitive
robotics (Steels & Hild, 2012). We approach these questions
from a purely neural perspective with an emphasis on psycho-
logical plausibility. Ultimately, we hope this model serves
as a starting point for such further research that may bring
us closer to the realization of a fully autonomous intentional
agent that can reason about its goals, plan, and act in a natural
environment.
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