Robotic manipulation: overview and basic concepts

Gregor Schöner gregor.schoener@ini.rub.de

Movement to reach and grasp, lift, transport, manipulate

involves a "manipulator", a robotic/human arm with a grasping mechanism/hand

- Perception: recognizing and segmenting objects, estimating their pose
- Scene representation: registering the spatial array in the arms workspace for possible target objects, free space, and obstacles

- Sequentially organizing actions ("serial order") and planning
- Selecting a relevant object or location in the scene

Extracting parameters of an individual movement segment based on initial posture of arm and target state

Generating a time course for the degrees of freedom of the arm and hand that moves the arm from its initial posture to a state in which the target object is grasped

Coordinating timed movement

Controlling the arm: translating the desired time course into control signals to the actuators/ muscles that move the arm

potentially update these signals based on feedback

- Detect termination of the movement
- Transition to the next element in a sequence of movements...

Object-directed action by humans/neural processes

- scene perception, object perception
- movement planning
- movement organization
- trajectory formation
- control

Perception

- attention, attentional selection
- recognition/classification
- estimation
- segmentation

Perception

attentional selection => pose

[Knips et al, Frontiers Neurorobotics 2017]

Movement planning

- planning sequence of movements toward goal
- extracting movement parameters for each movement

[Schöner, Tekülve, Zibner, 2019]

Movement organization

- initiation and termination of each movement
- serial/parallel activation of different movement "primitives"

[Knips et al, Frontiers Neurorobotics 2017]

Trajectory formation

- generating end-effector velocity reference command
- here: from a field of neural oscillators

=> lecture on timing and coordination

[Zibner, Tekülve, Schöner, ICDL 2015; Schöner, Tekülve, Zibner, 2019]]

Control

bringing about the physical movement...

=> lecture on control

Basic concepts for robotic arms

- task vs control level: degree of freedom problem
- rigid body motion
- kinematics vs kinetics
- kinematic chain
- manipulator kinematics
- redundant manipulator kinematics

Levels of movement planning/control: Degree of freedom problem

- Perception, planning, organization, and timing are about the task level
- but control is at the level of the manipulator's actuators...

Task level

- target state at task level
 - 3D position of gripper/hand and 3D orientation of gripper/ hand
- other task constraints for other task variables
 - e.g. closes point on arm surface to an obstacle
- timing at task level
 - e.g. for catching, hand at the right position at the right time

Control level

- mechanical degrees of freedom...
 - e.g. joint angles
- at which actuation takes place
 - motors
 - spring pre-load/muscle activation levels

Redundancy

- when there are more variables at the control than the task level
 - e.g. 10 joints for human-like arm vs 3+3 coordinates for hand position and orientation
- => depends on the task!
- that gap between task and control level is the "degree of freedom problem"

Degree of freedom problem

- many conventional robot arms are not redundant for end-effector task
 - most commonly: 3+3 hand/ gripper task variables and 6actuated joints

[Kuka KR16KS: Dahari, Tan 2012]]

Degree of freedom problem

- but: some manipulators are redundant for some tasks
- which gives them added flexibility across tasks
- or enables them to deal with multiple tasks at the same time

Degree of freedom problem

- The human motor system is redundant for many tasks
- e.g. upper extremity for reaching/pointing
- > 10 Dof
- ca. 40 muscles
- 3-6 hand pose task variables

[Tseng, Scholz, Schöner, 2002]

Basic concepts

- task vs control level: degree of freedom problem
- rigid body motion
- kinematics vs kinetics
- kinematic chain
- manipulator kinematics
- redundant manipulator kinematics

conventional robotics

- Murray, Li, Sastry: A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton FL USA 1994
 - a pdf is made available by the authors
 - quite an advanced text
- Lynch, Park: Modern robitics— mechanics, planning, and control. Cambridge Univ. Press, 2017
 - pre-print version available online from others MODERN ROBOTICS MECHANICS, PLANNING, AND CONTROL
 - a more tutorial text

KEVIN M. LYNCH AND FRANK C. PARK

Rigid body motion

- a rigid body performs motion in 6D
 - three positions, three orientations
 - three linear, three angular velocities
- SE(3) transforming frames

description of such mötion by

- the position vector
- a representation of rotation (Euler angles, Rotation matrix, generator of Lie group)

Rigid body motion

- constraints... revolute, prismatic, spherical.. joints
- reduce the number of degrees of freedom
- holonomic: can be formalized by reducing the number of variables

revolute joint

prismatic joint

Rigid body motion

in a in a kinematic chain, the degrees of freedom of each rigid segment is reduced

for revolute or prismatic joints to a single(!) degree of freedom captured

 $\begin{array}{c} l_2 \\ \hline \theta_2 \\ \hline \end{array}$

Kinematics vs Kinetics

- kinematics: the description of the possible spatial (and velocity space) configurations of an arm taking into account the constraints
 - treated now
- kinetics: the dynamic equations of motion of an arm taking into account the constraints, gravity, and actuators mounted on the joints
 - (later in the lecture series)

Kinematic chain

notion of work space

dexterous space: reachable with arbitrary orientation

Manipulator kinematics

- end-effector
 - e.g. with 3 translational and 3 rotational degrees of freedom
- configuration space
 - e.g. 7 actuated joint angles

Forward kinematics

where is the hand, given the joint angles..

$$\mathbf{x} = \mathbf{f}(\theta)$$

$$x = l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2)$$
$$y = l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2)$$

Differential forward kinematics

where is the hand moving, given the joint angles and velocities

$$\dot{\mathbf{x}} = \mathbf{J}(\theta)\dot{\theta}$$

$$\dot{x} = -l_1 \sin(\theta_1) \dot{\theta}_1 - l_2 \sin(\theta_1 + \theta_2) \dot{\theta}_1 - l_2 \sin(\theta_1 + \theta_2) \dot{\theta}_2$$

$$\dot{y} = l_1 \cos(\theta_1) \dot{\theta}_1 + l_2 \cos(\theta_1 + \theta_2) \dot{\theta}_1 + l_2 \cos(\theta_1 + \theta_2) \dot{\theta}_2$$

Formal approach to kinematics

base frame S and tool frame T

ask how any object represented in the base frame is represented in the tool frame => forward kinematics

transformation from base frame g_t to tool frame g_s is a function of the joint angles

$$g_{st}(\theta_1, \theta_2) = g_{sl_1}(\theta_1)g_{l_1l_2}(\theta_2)g_{l_2t}.$$

Formal approach to kinematics

product of exponentials

$$g_{st}(\theta_1, \theta_2) = g_{sl_1}(\theta_1)g_{l_1l_2}(\theta_2)g_{l_2t}.$$

$$g_{st}(\theta_1, \theta_2) = e^{\hat{\xi}_1 \theta_1} g_{st}(\theta_2) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} g_{st}(0),$$

$$e^{\widehat{\xi}_1 \theta_1} = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & 0\\ \sin \theta_1 & \cos \theta_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$e^{\hat{\xi}_2 \theta_2} = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & 0 & l_1 \sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 & 0 & l_1 (1 - \cos \theta_2) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\xi_i = \begin{bmatrix} -\omega_i \times q_i \\ \omega_i \end{bmatrix},$$

$$g_{st}(0) = \begin{bmatrix} I & \begin{pmatrix} 0 \\ l_1 + l_2 \\ 0 & 1 \end{bmatrix}.$$

Inverse kinematics

- what joint angles are needed to put the hand at a given location
- exact solution:

$$\theta = \mathbf{f}^{-1}(\mathbf{x})$$

Inverse kinematics

$$\theta_1 = \arctan_2(y, x) \pm \beta$$

$$\theta_2 = \pi \pm \alpha$$

$$\alpha = \cos^{-1} \left(\frac{l_1^2 + l_2^2 - r^2}{2l_1 l_2} \right)$$

$$\beta = \cos^{-1} \left(\frac{r^2 + l_1^2 - l_2^2}{2l_1 l_2} \right)$$

where $r^2 = x^2 + y^2$

[thanks to Jean-Stéphane Jokeit]

=> multiple "leafs" of the inverse kinematics

Differential inverse kinematics

which joint velocities to move the hand in a particular way

$$\dot{\theta} = \mathbf{J}^{-1}(\theta)\dot{\mathbf{x}}$$

with the inverse, J^{-1} , of J, if it exists

Singularities

- where the Eigenvalue of the Jacobian becomes zero (real part)...
- so that movement in a particular direction is not possible...
- typically at extended postures or inverted postures
- at limit of workspace

(a)

Singularities

- leading to non-invertability!
- and to sensitive dependence on parameters
- => avoid singularities in motor planning... major effort in robotics
- humans: joint angles prevent us from getting near singularities (for the most part)

Summary arm kinematics

kinematic model

$$\mathbf{x} = \mathbf{f}(\theta)$$

$$\dot{\mathbf{x}} = \mathbf{J}(\theta)\dot{\theta}$$

inverse kinematic model $\theta = \mathbf{f}^{-1}(\mathbf{x})$ $\dot{\theta} = \mathbf{J}^{-1}(\theta)\dot{\mathbf{x}}$

$$\theta = \mathbf{f}^{-1}(\mathbf{x})$$

$$\dot{\theta} = \mathbf{J}^{-1}(\theta)\dot{\mathbf{x}}$$

Redundant kinematics

redundant arms/tasks:
more joints than task-level
degrees of freedom

Redundant kinematics

=> (continuously) many inverse solutions...

Redundant kinematics

use pseudo-inverses that minimize a functional (e.g., total joint velocity or total momentum)

$$\dot{\mathbf{x}} = \mathbf{J}(\theta)\dot{\theta}$$

$$\dot{\theta} = \mathbf{J}^+(\theta)\dot{\mathbf{x}}$$

$$\mathbf{J}^{+}(\theta) = \mathbf{J}^{T}(\mathbf{J}\mathbf{J}^{T})^{-1}$$
 pseudo-inverse

minimizes $\dot{\theta}^2$

Spaces for robotic motion planning

or use extra degrees of freedom for additional tasks

[lossifidis, Schöner, ICRA 2004]

Basic concepts

- degree of freedom problem
- rigid body motion
- kinematics vs kinetics
- kinematic chain
- manipulator kinematics
- redundant manipulator kinematics