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Neural Dynamics
GR EG OR SC HÖNER ,  HE NDR IK  R E I M A N N,  A ND JONA S  L INS

As you are reading these lines, your nervous 
system is engaged in three aspects of behavior, 

perception, action, and cognition. Whenever your 
gaze falls onto a particular part of the visual array, 
your brain processes sensory information. Your 
brain controls motor actions that actively shift your 
eyes from fixation to fixation. And your brain makes 
sense of the visual patterns, recognizing letters, link-
ing the recognition across multiple fixations, and 
bringing about complex thoughts. Understanding 
how the brain, together with the sensory and motor 
periphery, brings about perception, action, and cog-
nition requires a theoretical language that reaches 
across theses different domains. A  central theme 
of this book is that the neural processes from which 
behavior emerges evolve continuously in time and 
are continuously linked to each other and to online 
sensory information. These processes generate 
graded signals that steer motor behavior. Continuity 
in state and in time invites the language of dynami-
cal systems. This chapter will introduce the core ele-
ments of that language.

Within the language of dynamical systems, 
stability is a critical concept. Stability is the capac-
ity to resist change in the face of variable inputs, 
such as variation in sensory inputs or variation in 
the signals received from other neural processes. 
For instance, if you are looking at a picture in this 
book, you may be able to focus on only that picture 
and ignore distractions—the music you have run-
ning in the background, the cars passing by the 
window next to you, the other pictures in the book. 
The rich environments in which we are immersed 
always provide alternatives to what we are currently 
processing. Our rich behavioral repertoire always 
provides alternatives to the motor action we are 
currently engaged in. And inside our nervous sys-
tem, neural processes are richly interconnected and 
inherently noisy. So for any particular neural pro-
cess to be effective and have an impact on behavior, 

it needs to be stabilized against the inf luence of all 
the other competing processes and against noisy 
inputs. In this chapter, we will discuss how the 
concept of stability can be formalized in the lan-
guage of dynamical systems, and how the theoreti-
cal models must be formulated so that stability is 
assured within them.

Stability means resistance to change. 
Cognition, however, requires change. Detecting 
a stimulus, initiating an action, or selecting one of 
multiple possible actions—all of these are decisions 
that imply change: The neural state before the deci-
sion differs from the neural state after the decision 
has been made. To understand how stable neural 
processes allow for change, we need to understand 
how neural states are released from stability, what 
we will call a dynamic instability. This chapter will 
discuss stability and the basic types of dynamic 
instabilities that are central to dynamic field theory 
(DFT) and recur throughout the book.

We begin with the concept of neural activation 
to capture the inner state of the central nervous 
system (CNS). First, we will talk about how activa-
tion can be linked to states of the world outside the 
nervous system, that is, to sensory stimuli or motor 
actions. Next, we will introduce the core notions 
of neural dynamics. The premise that neural states 
have stability properties narrows down the range 
of dynamical models. We will look at the linear 
dynamical model of a single activation variable 
to introduce the basic notions of dynamical sys-
tems: fixed points and their stability. Even a single 
activation variable may interact with itself. We will 
introduce the notion of a sigmoid nonlinearity, and 
find that self-excitation of an activation variable 
may give rise to a first instability, the detection 
instability that occurs in response to input. We will 
then consider two activation variables that interact 
inhibitorily, leading to competition. This simple 
system may already make selection decisions. 
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“When one of two inputs becomes dominant, a 
second instability, the selection instability, occurs. 
Excitatory and inhibitory interaction and the two 
instabilities they produce constitute dynamic 
fields, as we shall see in Chapter  2 and address 
throughout this book.

AC T I VAT ION
How do neural processes supported within the 
CNS generate behavior? To begin addressing this 
question, we clearly need some way to characterize 
different inner states of the CNS that lead to differ-
ent kinds of behavior. In choosing such a character-
ization we are selecting a level of description of the 
CNS. In dynamic field theory, we hypothesize that 
it is the activity of populations of neurons within 
circumscribed brain areas that is tightly related to 
behavioral patterns. Chapter  3 will operationalize 
this hypothesis by constructing activation fields 

from the firing rates of a population of neurons. In 
Chapter 2 we will show how neural activation fields 
and their dynamics may form neural representa-
tions of behavior. In this chapter, we will use the 
concept of neural activation variables and look at the 
simplest cases in which behavior is linked to only 
one or two such activation variables. In Chapter 2 
we shall find out that these activation variables 
are best viewed as measures of the neural activity 
within circumscribed subpopulations of neurons. 
Localized hills or peaks of activation in neural acti-
vation fields represent these subpopulations.

A neural activation variable, the way we will use 
it, is a real number that may be positive or negative. 
One may think of an activation variable as akin to 
the membrane potential of a neuron, so that the 
probability of eliciting an action potential is larger 
the higher the activation level is. The biophysics of 
neurons are brief ly reviewed in Box 1.1, but DFT is 

BOX 1.1  BIOPHYSICS OF NEURONS

Here we provide a brief review of the main biophysical features of neurons to establish the 
terminology used in this book. For textbook treatment of the biophysics of neurons see, for 
instance, Kandel, Schwartz, and Jessell (2013) and, especially, Trappenberg (2010), where the 
link between the biophysical and the population level is addressed in some depth.

Neurons are electrically active cells that maintain an electrical potential across their mem-
branes through ion pumps. Neurons have four functionally relevant components: (1) the axon, 
which is the output structure of the neuron and carries traveling excitations of membrane 
potential called spikes; (2) the soma, which is the core of the neural cell at which summation of 
inputs may lead to spike generation; (3) the dendritic tree, which collects inputs in the form of 
membrane potential changes that happen at synapses and transports these to the soma; and 
(4) synapses, electrochemical connections between the axons of presynaptic cells and the den-
dritic tree of the postsynaptic cell.

Across the membrane of neurons, a difference in ion concentration between the intracellu-
lar and the extracellular space gives rise to an electrical potential, called the membrane potential. 
The most relevant ions in this process are sodium and potassium, which are both positively 
charged. Membrane channels are proteins in the membrane that are specifically permeable to 
a particular type of ion, for instance, sodium or potassium. Membrane channels can be con-
trolled electrochemically to change configuration such that they are either open or closed. Ion 
pumps are another type of membrane protein that use chemical energy to actively transport 
ions across the membrane against their electrochemical gradient.

When there is no input to the membrane, the membrane potential is typically around −70 
millivolts (intracellular versus extracellular space), the so-called resting potential. In this state, 
the sodium concentration is much higher on the outside of the axon than on its inside, while 
the potassium concentration is much higher on the inside. The excess negative charge on the 
inside stems from largely immobile negative ions and from a slight constant efflux of potas-
sium ions through a few open potassium channels, openings in the membrane through which 
potassium ions can pass when a electrochemical control system configures them appropri-
ately. However, this efflux is largely counterbalanced by active sodium-potassium pumps such 
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that the resting potential is maintained at −70 millivolts. Importantly, the great majority of 
both sodium and potassium channels are closed while the membrane is at resting potential.

In most neurons in the higher nervous system of mammals, neural processing is based on 
spikes. Spikes, also called action potentials, are brief, active changes of the membrane poten-
tial that travel along a neuron’s axon. A  spike is triggered when the potential at a patch of 
axon membrane is increased above resting level (depolarized) to a certain threshold. This spike 
threshold typically lies about 15 to 20 millivolts above the resting potential. The initial depolar-
ization is caused by a flow of ions from a neighboring area of the axon where an action potential 
is already in progress. When the threshold is reached, voltage-gated sodium channels open. 
This initiates an all-or-none cascade of events. First, a sodium influx occurs, depolarizing the 
membrane further, which in turn leads to the opening of even more sodium channels. The 
result of this positive feedback loop is a very quick depolarization far into the positive range, 
typically peaking at around +40 millivolts. However, the sodium channels become inactivated 
and thus impermeable shortly after this, preventing further depolarization. Concurrently, 
voltage-gated potassium channels are opened, allowing potassium ions to flow out of the axon. 
This potassium efflux repolarizes the membrane to slightly below the resting potential. This 
causes the potassium channels to close again, and the original distribution of ions is then 
restored by active ion pumps.

The total duration of a spike often amounts to little more than 1 millisecond. However, the 
sodium channels cannot be activated for an additional time span of 1 or 2 milliseconds, the 
so-called refractory period, which limits the maximally possible spike frequency to around 500 
Hz (less in many neurons). Importantly, because the absolute height of the initial depolariza-
tion does not affect the course of events once the threshold has been reached, spikes are vir-
tually identical to each other in amplitude and duration, especially within the same neuron.

Finally, the propagation of spikes is based on currents along the length of the axon fiber, 
between an already depolarized patch of membrane and a neighboring membrane patch still 
at resting potential. These currents serve to depolarize the next axon patch to spike thresh-
old. Most axons are wrapped into so-called myelin sheaths, however, which consist of mul-
tiple layers of cell membrane, thus insulating the axon from extracellular space. The myelin 
sheath is interrupted by gaps every millimeter or so, called nodes of Ranvier. Only at the nodes 
of Ranvier can spikes establish, while the current triggering the spike at the next node is con-
ducted within the axon. This so-called saltatory conduction (from Latin saltare, “to leap”) greatly 
increases nerve conduction velocity.

The conditions at the cell body (soma) and at the dendrites of a neuron are similar to those 
at axonal membranes. That is, the distribution of ions between the intracellular and extra-
cellular space determines the membrane potential, with sodium and potassium being most 
relevant, and a resting potential of around −70 millivolts. There is an important difference, 
though: Potentials at somatic and dendritic membranes are graded, which means that volt-
age can vary across a wide range without triggering an all-or-none chain of events like spikes 
(although some neurons are capable of developing spikes at these membranes as well).

Changes in somatic or dendritic membrane potential are induced by synaptic activity. 
Synapses are contact points between the axon of one neuron (the presynaptic neuron) and the 
dendritic tree of another neuron (the postsynaptic neuron). When a spike in a presynaptic neu-
ron reaches the synaptic knob at the end of an axonal branch, neurotransmitters are released 
into the synaptic cleft. The transmitter molecules diffuse toward the membrane of the post-
synaptic neuron, where they bind to receptors embedded in the membrane, triggering the 
opening of ion channels. The binding works according to the key-lock principle, so that a given 
type of neurotransmitter specifically activates a particular type of channel. Thus, synaptic 
action can have different effects on the postsynaptic membrane potential, depending on which 
transmitter is released by a synapse. Excitatory transmitters cause sodium channels to open. 
The ensuing sodium influx depolarizes the postsynaptic membrane, inducing an excitatory  
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postsynaptic potential (EPSP). Inhibitory transmitters, by contrast, cause potassium channels to 
open. The resulting potassium efflux hyperpolarizes the membrane; that is, it makes mem-
brane potential more negative. This is known as the inhibitory postsynaptic potential (IPSP). Some 
inhibitory transmitters cause the opening of chloride channels, allowing an influx of chloride 
ions. As chloride ions are negatively charged, this likewise induces an IPSP. The size of the 
postsynaptic potential depends on the firing rate of the presynaptic neuron in the form of a 
sigmoidal function (although for many cortical neurons, the sigmoid saturates only for quite 
high presynaptic firing rates that are outside the normal physiological range).

Once a postsynaptic potential has been induced, it spreads across the dendritic tree to the 
cell soma, eventually reaching the axon hillock, the starting point of the axon where spikes are 
generated. As is the case on the axon itself, a spike is generated if the membrane potential at the  
axon hillock reaches a threshold some 20 millivolts above the resting potential (note, however, 
that many neurons have spontaneous base firing rates). Hence, EPSPs increase the probability 
of spiking, whereas IPSPs reduce it.

Temporal summation of synaptic input occurs when multiple spikes arrive at synapses in 
quick succession, so that the postsynaptic potentials induced by the individual spikes overlap 
in time and may thus add up to a larger change in membrane potential or, if they have differ-
ent signs, to cancel each other out. Through temporal summation, a postsynaptic cell may be 
driven to a spiking threshold when an EPSP induced by a individual spike may not be suffi-
cient to do this. Conversely, summation of IPSPs lowers spiking probability more than a single 
IPSP. Spatial summation refers to the same principle of summation at the point of spike genera-
tion when the EPSPs and IPSPs originate from different synapses across the dendritic tree. The 
arrangement of synapses on the dendritic tree may bring about nontrivial computation, such 
as shutting off the connections from a particular branch of the dendritic tree by an IPSP down-
stream from that branch (also called shunting inhibition; see Koch, 1999).

For postsynaptic potentials to be summed up, spikes need to arrive at an axon hillock within 
a certain time window. The width of this time window depends on the time constant of the 
postsynaptic membrane (which in turn depends on properties of the membrane itself as well 
as on the state of the ion channels, determining membrane resistance and capacitance). The 
membrane potential evolves according to a dynamics much like that postulated in DFT, with 
a –u term determining an exponential decay toward the resting level. This can be observed in 
the laboratory when an electrode is inserted through the membrane into the cell and a current 
is injected. The timescale of this exponential is slower for cortical neurons than for neurons 
on the periphery of the nervous system, making temporal summation more likely. Although 
spikes last only a millisecond, the integration timescale of cortical neurons is sufficiently slow 
to enable summation of incoming spikes that are separated by less then 10 milliseconds.

The neural dynamics at the population level that we model in DFT is characterized by this 
slower timescale of summation (see Trappenberg, 2010, for a more detailed discussion of this 
link). This neural dynamics of populations of neurons can be derived mathematically from the 
biophysical dynamics of neurons under certain restrictive conditions in the so-called mean-field 
approximation, in which the evolution of a population level “activation” is determined by the 
summed asynchronous spiking activity of neurons in the population (Faugeras, Touboul, & 
Cessac, 2009). In that derivation, the basic form of the neural dynamics on which DFT is based, 
including the –u term, the resting level, and input as an additive contribution to the rate of 
change, is inherited from the biophysical level of description but acquires a slower timescale 
when the averaging across the population happens. Similarly, the sigmoidal threshold function 
used at the population level is functionally analogous to the sigmoidal transfer function that 
describes the postsynaptic potential as a function of the presynaptic firing rate. Making that 
analogy concrete is not so easy, however, as these sigmoids link very different kinds of vari-
ables (spike rates to membrane potentials for the biophysical sigmoid, population activation to 
its rate of change for population-level neural dynamics).
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not intended to be biophysically detailed and the 
analogy to neural firing is not critical to under-
standing DFT. In fact, we do not use actual units 
of electrical potential to describe activation, nor do 
we take into account the mechanisms of spike gen-
eration and of synaptic transmission. We will, how-
ever, capture the basic idea of synaptic transmission 
by assuming that there is a threshold, which we 
set to be zero, so that only activation values above 
that threshold—that is, only positive levels of 
activation—are transmitted to other activation 
variables. This assumption is formalized through 
the sigmoidal function, illustrated in Figure 1.1, 
which increases monotonically from zero for very 
negative levels of activation to one for large positive 
activation levels.

Connectionism uses a similar concept of activa-
tion to describe the inner state of each unit of paral-
lel processing, the abstract connectionist “neuron.” 
Most connectionist models use graded activation 
variables. Connectionist neurons may then be “on” 
or “off ” (Thomas & McClelland, 2008), character-
ized again by a sigmoidal threshold function applied 
to the activation level. Some connectionist models 
use binary activation variables to begin with, so they 
do not require a separate sigmoidal threshold func-
tion. In Chapter  3 we will see that the activation 
variables of DFT are measures of activity in small 
subpopulations of neurons. These variables thus do 

not directly ref lect the state of individual neurons. 
In typical connectionist models, the model neurons 
are similarly meant to encompass activity of more 
than one real neuron. Thus, overall, the concept of 
activation is used more variably in connectionism, 
but is not qualitatively different from the dynamic 
concept of activation used in this book.

A concept of activation is also invoked in some 
versions of classical cognitive architectures, models 
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FIGURE 1.1: A sigmoidal threshold function, g(u), is plot-
ted as a function of activation level, u. The sigmoid maps 
low levels of activation onto zero and large levels of acti-
vation onto 1 and links these two regimes smoothly as a 
monotonically increasing function. By convention, we 
position the half-point of the sigmoid at the activation 
level of zero. That convention effectively defines the acti-
vation scale. In DFT models we typically use the mathe-
matical formalization of g u u( ) = + −( )( )1 1/ exp ,β  where β 
is the slope of the sigmoid at zero activation. Larger values 
of β create steeper (more nonlinear) sigmoids.

The mathematical derivation of the mean-field approximation is complex; as a result, it is not 
easy even to state how the population “activation” variable is computed from the spiking activi-
ties of all the neurons that contribute. At this point, there is no derivation of the neural dynamics 
at the population level that is general enough to cover the conditions under which we use the 
population description. We will show in Chapter 3 that the activity of populations of neurons pro-
vides the best correlate of neural measures with measures of behavior. The neural dynamics on 
which DFT is based is a good phenomenological description of how the activity in populations of 
cortical neurons evolves over time under physiological conditions in which the brain is involved 
in perception and generates behavior. Although this phenomenological description has not been 
rigorously derived as an approximate description from biophysical neural dynamics under these 
physiological conditions, it has not been ruled out that this could be achieved in the future.

What properties of biophysical neurons are we leaving out from the population-level neural 
dynamics of DFT? Clearly, we are not including discrete spiking events and spike times. The 
mean-field picture assumes that, within a neural population, spikes are generated frequently 
enough and asynchronously enough to sample continuous time. It is possible, however, that 
for some neural mechanisms, such as the detection of time differences (e.g., in the auditory 
system), or for learning (e.g., in spike time–dependent plasticity), the timing of spikes plays a 
special role. Those would be cases where the approximation on which DFT is based begins to 
break down. At this point, there is no clear empirical evidence for a functional role of the spik-
ing mechanism that would not be captured by population activation, but the possibility of such 
a functional role remains.
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of cognition that are based on the computer meta-
phor and on concepts of information processing. 
In ACT-R, activation is an attribute of items of 
memory that determines how accessible the memo-
rized information is (Anderson, 1983). Multiple 
factors like the salience of an item, the strength of 
its association with other items, or the strength of 
a memory trace of the item may contribute to the 
level of activation. The probability of retrieval of an 
item is an increasing (sigmoidal) function of activa-
tion, and the latency of retrieval is an exponentially 
decaying function of its activation level. These two 
relationships link activation to observable response 
rates and response times. In a broad sense, there 
is some analogy between this notion of activation 
and our dynamic concept of activation, in that high 
levels of activation have more impact on behavior 
(responses) than low levels. The theoretical setting 
of ACT-R is so different, however, from that of neu-
ral dynamics that this analogy is not useful; thus for 
the remainder of this book we will ignore that alter-
nate notion of activation.

If activation characterizes the inner state of 
a part of the CNS, how might that inner state be 
related to what is outside the CNS? Ultimately, the 
CNS is connected to the outside world through the 
sensory surfaces, the retina, the cochlea, the skin, 
the distributed proprioceptive sensors, and other 
sensory systems. Moreover, neural activity drives 
motor systems, activating muscles and bring-
ing about mechanical change in the world. The 

connections that sensor cells make to a portion of 
the CNS can be characterized as input to relevant 
activation variables that inf luences activation lev-
els. This will be quite easy to conceptualize within 
DFT, as we shall see shortly. Conversely, activation 
variables may have an impact on motor systems, 
driving muscle activation and changing the physi-
cal state of an effector. That is actually trickier to 
conceptualize than one might think. In terms of the 
metaphor of the Braitenberg vehicles that was used 
in the introduction to this part of the book, motor 
action always brings with it the potential of closed 
sensory-motor loops, as any motor action has sen-
sory consequences. We will address this problem in 
depth in Chapter 4.

Much of functional neurophysiology is dedi-
cated to looking for systematic relationships 
between stimulus or motor parameters and 
the activity of neurons. This is often based on 
information-theoretical notions, in particular, cod-
ing and prediction. In this book, we try to stay away 
from such notions. Coding principles and their 
relationship to feed-forward neural networks are 
brief ly reviewed in Box 1.2, where we also discuss 
how the language of neural dynamics is necessary 
to make sense of recurrent neural networks.

For now, let us say then that in DFT the inner 
state of the CNS is related to the world outside 
through two directions of inf luence:  The state of 
the world inf luences the levels of activation, and 
those levels of activation inf luence the state of 

BOX 1.2  NEURAL CODING, FEED-FORWARD NETWORKS, AND 
RECURRENCE

The classical conception of feed-forward neural networks is illustrated in Figure 1.2. The con-
nectivity among nodes u ii , , ,= …( )1 2 6  is ordered so that each neuron receives input only from 
neurons closer (in connections) to the sensory surface (described by input levels s s s1 2 3, , ) or 
directly from the sensory surface itself. In such a forward network, the output neurons are 
those furthest removed from the sensory surface. Their output can be described as a function 
of the sensory inputs, subsuming all intermediate (hidden) neurons. In the illustration,

 g u s s s6 1 2 3( ) = ( ), , .function  (B1.1)

The function may be nonlinear due to the sigmoidal threshold function for each neuron’s 
output but maps each input onto a unique output. If the function were invertible the network 
would implement a code, a one-to-one mapping between inputs and outputs. Close to the sen-
sory periphery, where the networks are not deep, such invertible mappings are sometimes 
observed or postulated, leading to the notion of rate code: Each level of stimulus intensity is 
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uniquely represented by a particular rate of neural firing. In general, however, the map is not 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a set 
of changes in the input pattern does not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 

s1

u1

s3s2

g(u6)

u2 u3

u4 u5

u6

FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3, are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.

s1 s3s2

g(u6)

u1 u2 u3

u4 u5

u6

FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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the world through motor actions. In fact, it is ulti-
mately only through those links to the sensory and 
motor systems that the inner states of the CNS have 
meaning. In the end, this may be the concrete man-
ifestation of the embodiment stance to cognition 
(Riegler, 2002). We shall come back to this point 
multiple times throughout the book.

N E U R A L  DY NA M IC S
The inner state of the CNS typically varies contin-
uously over time. Unlike digital computers, organ-
isms do not have a clock that updates the state of 
the CNS in a computational cycle. Nor is there any 
behavioral evidence that processing occurs from 
time step to time step. On the contrary, there is 
behavioral evidence for online updating of CNS 
states that occurs in continuous time. For instance, 
if the target to which a pointing movement is 
directed is shifted at any time during the processes 
of movement preparation or initiation, the move-
ment begins to ref lect that shift after a delay of 
about 100 ms. That shift is invariant as the timing 
of the target shift is varied (Prablanc & Martin, 
1992). We should think, therefore, of activation 
variables as functions of continuous time, denoted 
mathematically by u(t), where u stands for activa-
tion and t, for continuous time.

Does this time dependence itself have to be con-
tinuous? In other words, does u(t) change smoothly 
over time, or may u(t) jump abruptly from one 
value to another? At the level of the biophysics of 
neurons, the forming of an action potential would 
seem to be an abrupt event, although it is actually 
continuous on a finer timescale (see Box 1.1). There 
is really no evidence that behavior is driven by such 
microscopic events. To the contrary, there is behav-
ioral evidence for inertia, for a gradual change of 
activation states. A classic example is visual inertia 
in motion perception (Anstis & Ramachandran, 
1987), in which a percept of visual motion is set 
up by a first stimulus of apparent motion, followed 
by an ambiguous stimulus that offers two possible 
paths of motion, one path in the same direction as 
the first motion, the other at an angle to the initial 
path. Observers prefer the motion path in the same 
direction. (The exact mapping of such perceptual 
continuity to our activation variables requires 
some work, which we will do in a formal way in 
Chapter 2).

The postulate that activation variables u(t) are 
continuous functions of continuous time has impor-
tant consequences. It rules out, for instance, the idea 
that the values of activation variables originate from 
simple input–output computations (seeBox 1.2), 

an iteration process through time. From an initial level of activation, the activation level of 
all neurons is iteratively updated. At each time step, the output levels that provide input to 
a neuron are taken from the previous iteration step. In a sense, this iteration rule for the 
activation levels of all neurons represents a dynamical system, although in discrete time 
(Scheinerman, 1996). On the other hand, the synchronous updating of all neurons by some 
kind of clock cycle is not neurally realistic. There is no evidence for such updating across an 
entire network. Instead, as briefly reviewed in Box 1.1, neurons fire asynchronously, effec-
tively sampling continuous time. The mathematic description of how activation evolves in 
recurrent neural networks in continuous time is exactly the neural dynamics discussed in 
the main text of this chapter.

Recurrence and the neural dynamics it implies are not conceptually compatible with the 
information-theoretical notions of encoding. In recurrent networks, there is no one-to-one 
or even many-to-one mapping from the stimulus space. The output of any neuron depends 
not only on the inputs to the network but also on the current state of activation in the net-
work, which reflects the recent history of activation and stimulation. Different histories of 
stimulation leading up to the same instantaneous stimulus lead to different activation pat-
terns. Information-theoretical measures are still sometimes used to characterize recurrent 
neural networks as an approximate description (e.g., looking for how deep in time we need 
to go to extract how much information about a stimulus). In dynamic field theory we aban-
don this language, however, and emphasize instead the neural processes captured by neural 
dynamics.
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because in such input–output systems any abrupt 
change of input induces a matching abrupt change 
in output. Neural dynamics formalizes this postu-
late of continuous evolution of activation in con-
tinuous time. Neural dynamics means that the time 
course of an activation variable, u(t), is the solution 
of a differential equation

 τ !u f u= ( ). (1.1)

where !u t( )  is the rate of change of u, and τ is a positive 
constant that serves to define the units of time (e.g., 
seconds or milliseconds). Here, f(u) is a smooth 
function of activation, u, and we need to figure out 

which function, f, produces the right time course of 
activation.

Before we do that, let’s unpack Equation 1.1. The 
rate of change of an activation variable is formally 
its derivative with respect to time, !u. If we were to 
plot the time course of activation, u(t), against time, 
t, the rate of change would be the slope of that func-
tion. To make that intuitive, think of activation 
as the position of a particle. The rate of change of 
the position of a particle is its velocity—simple as 
that! The differential equation above, Equation 1.1, 
forms a dynamical system for the activation vari-
able, u(t) (see Box 1.3 for a tutorial on dynamical 
systems). The solutions of the differential equation 

BOX 1.3  DYNAMICAL SYSTEMS

The word dynamics has a variety of meanings. In music, for instance, dynamics refers to the 
varying levels of sound within a piece. A dynamic scenario in computer vision or robotics is 
simply a time-varying scenario. The word comes from the Greek dynamis, for “power” or “force.” 
In classical mechanics, dynamics refers to the core idea that movement can be explained and 
predicted from underlying causes, the forces that act on bodies. In modern mathematics, the 
theory of dynamical systems is a well-developed field with deep connections to other branches 
of analysis (see Perko [2001] for an advanced but pertinent treatment). This theory is the basis 
of most mathematically formalized models in the sciences—not only in physics and engineer-
ing but also in chemistry, biology, economics, sociology, and many other areas. Braun (1993) 
provides a highly accessible introduction to dynamical systems with an emphasis on such 
applications, giving a large number of examples.

The core idea of the theory of dynamical systems is that “the present predicts the future” 
given a “law of motion,” a dynamical law formalized as a dynamical system. To make that idea 
concrete, we first need to talk about variables and time courses. Think of a single variable, u, 
that characterizes the state of a system (we will say something about multiple variables at the 
very end of this box). In the main text of this book, u is an activation level. In mechanics, u 
could be the position of a point mass along a line, for example, along a vertical line when study-
ing free fall. The variable is assumed to capture the evolution in time of a system by its time 
dependency, u(t). Figure 1.4 illustrates such a time course, here in the form of an exponential 
function. The derivative of u, denoted by !u or du/dt, is the rate of change of u, also illustrated in 
Figure 1.4. If u were the vertical position of a point mass, its rate of change would be the verti-
cal velocity of the point mass. In the figure, as u decreases in time, its rate of change is nega-
tive. The decrease slows down over time, and thus the rate of change approaches zero from 
below. The time courses of the variable u(t) and of its rate of change, !u t( ), are correlated. Figure 
1.4 shows this correlation by plotting !u t( ) against u. This reveals the functional relationship 
between the two quantities,  !u t u( ) = − .

More generally, any functional relationship

 !u t f u( ) = ( )  (B1.2)

sets up a dynamical system through a differential equation. Figure 1.5 illustrates a gen-
eral dynamical system characterized by a nonlinear function, f(u). The core idea of dynamical 
systems theory is captured by the existence and uniqueness theorem, which says that for any 
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sufficiently smooth function, f(u), and any initial value of u, a unique solution, u(t), of the dif-
ferential equation exists for an interval of time, t. Thus, given the dynamics captured by the 
function, f(u), “the present predicts the future.” In Figure 1.5, this is made plausible by mark-
ing an initial condition for u and highlighting the rate of change for that initial value. In this 
case, a negative rate of change, predicting an imminent decrease of the activation variable, is 
indicated by the arrow pointing to the left. Thus, in a mental “iteration,” we expect the vari-
able to have a somewhat smaller value to the left of the initial value a moment of time later. 
The dynamics will then supply a new rate of change, which predicts the next value and so on.

In the main text of this chapter we use this form of iterative mental simulation to intui-
tively understand attractors, the convergence in time to a fixed point of the dynamical system. 
A fixed point, u0, is formally defined as a solution of

  
f u0 0( ) =

                   
(B1.3)

as illustrated in Figure 1.6. Because the function f does not depend on time, the fixed point, 
u0, is constant over time as well, so that !u0 0= , and thus:  !u f u0 0= ( ) = 0. In other words, the 
fixed point, u0, is a constant solution of the differential equation.

A fixed point is “asymptotically stable” if the solutions of the dynamical system that start 
from initial conditions nearby converge over time to the fixed point. When the dynamics, f, has 

a negative slope at the fixed point, 
df
du

u u=( ) <0 0,  then the fixed point is stable. The arrows in 

Time, t

u

u

Time, t

u

u

FIGURE  1.4: Top: The time course of a dynamic variable, u. Middle: The time course of its rate of change, !u.  
Bottom: The functional relationship between !u and u obtained by correlating the two. The symbols in the three 
panels mark corresponding values of !u and u at three points in time. The time courses on top were obtained from 
solutions of the linear dynamical system shown at the bottom.

u = f(u)

u
Initial
condition

FIGURE 1.5: A nonlinear dynamics system !u f u= ( ) with a particular value of u chosen as initial condition (open 
circle). The dynamics assigns a rate of change to that initial condition, which predicts the direction of change 
(arrow).
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Figure 1.6 remind us of the argument made in the chapter’s main text: To the left of the fixed 
point, the positive rate of change leads to an increase toward the fixed point, and to the right 
of the fixed point, the negative rate of change leads to a decrease toward the fixed point. An 
asymptotically stable fixed point is also called a fixed point attractor and sometimes just an 
attractor (there are more complex limit sets that carry that name, but we will not concern our-
selves with those in this book).

This mathematical concept of asymptotical stability is sometimes loosely referred to as 
stability by modelers, even though strictly speaking stability is a slightly different concept. 
Mathematically, a fixed point is “stable” when solutions that start nearby stay nearby (but 
do not necessarily converge). Asymptotic stability implies stability, but not vice versa. This is 
important because instability is the opposite of stability, not of asymptotic stability. A fixed 
point is “unstable” if there are solutions that start arbitrarily close to the fixed point but move 
away from the fixed point. The lower plot in Figure 1.6 shows an unstable fixed point on the 
right. In fact, this is a “repellor,” a fixed point that all solutions starting nearby move away from.

This plot also brings home the important message that stability is a property of a fixed 
point, not of the entire dynamical system! There are two fixed points here, one stable, the other 
unstable. Sometimes, researchers talk about “stable” systems. This is a loose way to talk about 
a system that has a single fixed point, which is stable. Linear systems, in particular, can have 
only a single fixed point (because a straight line can only go through zero once). Because a lot 
of systems encountered in modeling are linear or are approximated as linear, it happens quite 
often that there is a single fixed point, hence this loose talk about the “stability of the system.”

In nonlinear dynamical systems, the fixed points and their stability organize the ensemble 
of all solutions of the dynamical system. This ensemble is called the flow and can be thought of 
as a mapping from all initial conditions to the states the solutions lead those initial conditions 
to at a given time, t, later. For the dynamical system at the bottom of Figure 1.6, for instance, 
all initial conditions to the left of the repellor will be mapped onto values increasingly (with 
increasing time) close to the attractor on the left. All initial conditions to the right of the repel-
lor will be mapped onto increasingly large values of u (which will go to infinity when time goes 
to infinity). The qualitative theory of dynamical systems is aimed at characterizing the flow of 
dynamical systems rather than analytically solving specific equations. Most textbooks on dif-
ferential equations focus on solving equations, but the books cited earlier in this box address 
the qualitative theory of dynamical systems (as does Scheinerman [1996], a good elementary 
text provided freely online by the author). In the qualitative theory of dynamical systems, 
flows that are merely slight deformations of each other are all considered to be equivalent (the 

u = f(u)

u

u = f(u)

u

u0

u0 u1

FIGURE 1.6: Top: The same nonlinear dynamics system of Figure 1.5 with the fixed point, u0, marked by a filled 
circle. Arrows indicate the attraction to this asymptotically stable fixed point. The thin line illustrates the (nega-
tive) slope of the function, f(u), at the fixed point. Bottom: The dynamics is changed (shifted upwards) and now has 
two fixed points, an attractor, u0, on the left and a repellor, u1, on the right.
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Parameter

Parameter

u

u

u

u1

u1

u0

u0

FIGURE 1.7: Top: A part cut out of the dynamics at the bottom of Figure 1.6 is further changed by adding a constant 
parameter to the dynamics. The dynamics at three values of this additive parameter is shown (see text). Bottom: 
A bifurcation diagram of the dynamics shown at the top plots the fixed points of the dynamics as a function of the 
parameter that changes the dynamics. The two fixed points collide and then disappear as the additive constant 
parameter increases.

technical term is topologically equivalent). For instance, if we deform the function, f, at the bottom 
of Figure 1.6 a bit, but not enough to remove the two fixed points or to change the signs of the 
slope of f around each fixed point, then the precise time courses of solutions would change, 
but that change would be minor. Solutions of the original and of the deformed dynamical sys-
tems could be mapped onto each other such that neighboring solutions in the original system 
remain neighbors in the deformed system and vice versa (this is topological equivalence). In 
contrast, the dynamical system at the top of Figure 1.6 is not topologically equivalent to the 
one at the bottom. One can see this by looking at solutions for the system at the top that start 
just to the left and just to the right of the location where the repellor is in the bottom system. 
Those solutions stay close to each other over time for the top system, while they diverge from 
each other for the bottom system.

When we model neural processes, we essentially form hypotheses about categories of solu-
tions, different stable states, and how they are connected. This amounts to making assump-
tions about the flow, the ensemble of all solutions. That is why the qualitative theory of 
dynamical systems is of interest to us. Qualitatively different flows are often separated by 
instabilities, which we will look at next. Instabilities thus demarcate regimes with qualitatively 
different solutions, and that is why instabilities are of so much interest to us in dynamic field 
theory (DFT).

Instabilities are changes in the number or stability of fixed points. The changes come from 
some parametric change of the dynamics, that is, of the function, f. We think of such changes 
as being smooth, that is, the function, f, changes continuously as a continuous parameter is 
changed. In the main text of this chapter, input strength is such a parameter, for instance. Even 
though the function, f, changes smoothly, the solutions may change abruptly, and that hap-
pens exactly at instabilities. Figure 1.7 illustrates how this may happen. Here we have taken 
the portion of the dynamics depicted at the bottom of Figure 1.6 that contains the two fixed 
points and applied a continuous parameter that shifts the dynamics, f, upward ( f is shown only 
for three values of that parameter). As this happens, the attractor on the left and the repellor 
on the right move toward each other, until they collide, forming a single fixed point that is now 
unstable. At slightly larger values of the parameter, the fixed point is gone! So the stability of a 
fixed point has changed (attractor to unstable fixed point) and the number of fixed points has 
changed (from two to zero). This is the “tangent bifurcation” that we also discussed in the main 
text. The word bifurcation is a mathematical term for the looser term instability more commonly 
used by physicists and modelers. Why instability is a good term is intuitive from Figure 1.7: Just 
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are time-continuous (in fact, differentiable) trajec-
tories of activation, u(t), for which Equation 1.1 is 
true—that is, whose rate of change, !u, is the pre-
scribed function, f(u), of its current activation, u.

But what function, f(u), would be appropriate? 
We need another postulate to narrow in the class of 
admissible dynamical systems defined by f(u). That 
additional postulate is stability. Intuitively, stabil-
ity means something like resilience, the capacity 
to recover from perturbations. In the CNS, neural 
noise is a common form of perturbation. Neural 
processes vary stochastically (see Box 1.4 for a dis-
cussion of noise and f luctuations). Neural variability 
acts as stochastic perturbations on any activation 
variable that receives neural input. Stability enables 
the activation level to resist such perturbations. 
Other forms of perturbation are distractors, that is, 
activation states that are not compatible with the 
current activation pattern in the CNS. For instance, 
when gaze is fixed on a visual target, neural activa-
tion from a visual stimulus outside the fovea would 
tend to attract attention and to redirect gaze to that 
new location. Stability is the capacity to resist such 

distractor activation (even if resistance is limited in 
time and strength, see Kopecz and Schöner, 1995, for 
an early neural dynamic account of such resistance).

Because the CNS is highly interconnected, an 
activation variable is exposed to influences from 
many other activation variables or directly from sen-
sory stimulation. Most of the time, many of these 
influences are not consistent with the current state 
of the activation variable; that is, they would tend to 
drive activation away from the current state. Without 
stability, the CNS would not be able to shield a par-
ticular state from all other possible inf luences that 
would disrupt neural function quite generally. We 
will examine the postulate of stability in more detail 
later in the chapter and again in Chapters 2 and 4. For 
now, we shall use the stability postulate to constrain 
the class of neural dynamics, f(u), that generates 
behaviorally meaningful time courses of activation.

How stability constrains the function f(u) can 
be understood by first looking at the trivial case 
in which f(u)  =  0, illustrated in Figure 1.8. In this 
case, the rate of change of activation is constant at 
zero, independent of the current level of activation.  

as the bifurcation occurs, and the two fixed points collide, the slope of the function, f, at the 
remaining single fixed point becomes zero! So the stability criterion starts to fail at this point.

A theorem by Hopf has classified instabilities in dynamical systems using concepts that 
we will not discuss here. In that classification, the tangent bifurcation is the simplest and 
most generic instability, and most of the instabilities encountered in DFT are tangent bifurca-
tions (the only exceptions arise from special symmetries in a dynamics). What the theory of 
bifurcations and, more generally, the qualitative theory of dynamical systems helps us model-
ers with is solving the problem of inverse dynamics. Forward dynamics means solving a given 
differential equation, and that is what most textbooks focus on (we do this mostly by numeri-
cal methods; see Box 1.4). Inverse dynamics is finding the right differential equation given some 
assumptions about its solutions. We typically make assumptions about attractors and how 
their number and stability change as conditions are changed. We can then use bifurcation 
theory to decide whether a particular class of dynamical systems correctly captures that lay-
out of the solutions.

This tutorial box only provides the most basic ideas. In particular, we have been referring 
to a single variable, u, and its dynamics, !u f u= ( ). Most of the time in DFT we have many vari-
ables; in fact, conceptually we have infinitely many variables described by entire functions, 
u(x). The ideas sketched out here do carry over into higher dimensions, but the level of mathe-
matics required is more advanced. Fixed points are still fixed points in higher dimensions. The  
slope of f is replaced by the real parts of the eigenvalues of the matrix that linearizes f around 
the fixed point. Attractors are separated not by simple repellors but by lines or surfaces that are 
invariant solutions, unstable manifolds. But these changes are primarily technical in nature. 
The only thing that is qualitatively new when we move beyond a single dimension is the occur-
rence of more complex attractors such as periodic solutions (limit cycle attractors) and more 
complex bifurcations. In this book we manage to stay away from those, although they do play 
a role in understanding coordination (Kelso, 1995; Schöner & Kelso, 1988).
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BOX 1.4  STOCHASTIC DYNAMICAL SYSTEMS AND THEIR 
NUMERICAL SOLUTION

Noise is important in neural dynamics. First of all, one of the salient features of real neu-
ral networks is that neural activity is noisy, whatever the cause. Behavioral data are also 
noisy: Performance varies from trial to trial. Such behavioral variance is an important diagnos-
tic of the underlying dynamics. Models that account for the variability of behavior are stronger 
than models that predict only the average performance. More specifically, the neural dynamics 
we use in dynamic field theory (DFT) goes through instabilities. Near instabilities, the neural 
dynamics is sensitive to noise: A small random perturbation may kick the system out of an 
attractor that is close to becoming unstable and thus induce a transition to another stable state. 
Thus, in our modeling, we must address noise explicitly.

Mathematically, variability is a topic of probability theory. Combining probability theory 
with dynamics requires the relatively advanced mathematical techniques of stochastic differ-
ential equations (Gardiner, 2009), but fortunately we really only need the simplest case, which 
can be grasped quite intuitively. The idea is that noise acts as a contribution to the dynamics 
that is additive, white, and Gaussian. Formally,

 !u f u q t= ( ) + ( )ξ  (B1.4)

where f(u) is the deterministic portion of the differential equation, q is the noise strength, 
and ξ t( ) is a Gaussian white noise process. First, the noise is additive, which really means that 
its influence is independent of the current level of activation, u. That is a reasonable first 
approximation. Even if the source of noise were sensitive to the level of activation (e.g., more 
noise at higher levels of activation as in a Weber law), there would not be any level of activa-
tion at which noise is zero. So we are modeling that base-level noise that is common across 
activation levels. Second, the noise is white. That means that the noise, ξ t( ), at one particular 
moment in time, t, is statistically independent of the noise, ξ ′( )t , at any other time, ′t . This 
expresses that the contributions of noise to the dynamics are truly random. If there was 
any dependency across different times, then that would be a deterministic contribution to 
the dynamics that should have been included in the deterministic portion, f, of the dynam-
ics. Third, noise is Gaussian. This means that the distribution of the noise at any moment in 
time is a Gaussian distribution with zero mean, ξ t( ) = 0. The joint probability distribution 
of the noise at different moments in time factorizes into Gaussian distributions that are all 

generated from the two-point correlation function, ξ ξ δt t t t( ) ( ) = −( )′ ′ , for two times, t and ′t . 

The delta function is zero whenever the two times differ (consistent with the independence 

at different moments in time; for Gaussian processes, statistical independence is the same 
as being uncorrelated). The delta function at the point when both times coincide is infinite, 
but its integral over time is 1. Obviously, this third property of noise is a bit more technical. 
It comes, ultimately, from the central limit theorem of probability theory. The idea is that 
the noise comes from many sources of randomness, all independent of each other but hav-
ing the same distribution. The theorem says, intuitively speaking, that the superposition of 
such noise sources is Gaussian distributed. In the nervous system, it is easy to imagine that 
noise comes from many different sources, for example, variations in membrane potential and 
synaptic activity across the many neurons—about 10,000 on average—that project onto any 
given cortical neuron.

The upshot is, thus, that noise adds a random component to the rate of change that gives 
the activation variable a kick that is uncorrelated at every moment in time. The activation 
variable itself evolves by integrating over time across these random kicks. We illustrated this 
in Figure 1.8 for the case that f(u) = 0, that is, for a purely stochastic dynamics. The simulation 
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shown in that figure is the result of integration across the Gaussian white noise process. This 
leads to a time-continuous process, called the Wiener process, that is still very random because 
its increments are independent of each other. That is, at any moment in time, the direction of 
change is independent of the current level of activation. We used this insight in Figure 1.8 to 
argue for a deterministic portion, f(u), of the dynamics that limits variance by introducing sta-
bility. This was done in Figure 1.9, in which  f u u h( ) = − + .

Conventionally, the source of randomness, the stochastic perturbation on the right-hand 
side of the dynamics, is referred to as noise. The consequence of randomness is variability 
of the solutions of the stochastic dynamics. That variability is referred to as fluctuations. Not 
all authors strictly adhere to that convention, however. Essentially all the models we use in 
DFT have a noise component and are thus stochastic differential equations. In many cases we 
compare the fluctuations of the time courses obtained from the stochastic dynamics to vari-
ability across time or trials observed in experiment. In some instances, those comparisons 
lead to quantitative match and predictive power (e.g., Schöner, Haken, Kelso, 1986; Schutte, 
Spencer, 2009).

The numerical solution of stochastic differential equations differs a bit from the numerics 
of deterministic differential equations. Before we review that, however, we will first discuss 
numerics in greater detail. Numerics is an issue for the modeler, of course, not for the ner-
vous system. The nervous system is essentially an analogue computer that implements neu-
ral dynamics directly (although that implementation is not trivial either, using spikes, as we 
briefly discussed in Box 1.1). But as modelers we solve the dynamical equations numerically 
on digital computers when we run simulations to account for neural or behavioral data. When 
we use neural dynamics to drive robots that behave autonomously based on their own sensory 
information (as in Chapters 4, 9, 12, and 14), we do the same: The robots have on-board comput-
ers, on which we solve the equations in real time, taking input from the sensors and sending 
the computed solutions to the actuators. On computers, time is discrete. The computer goes 
through computational steps, paced by its clock. The time step available to us at the macro-
scopic level at which we write our code is much, much larger than the clock cycle on the hard-
ware (e.g., somewhere around 10 to 50 milliseconds for our computational cycles compared to 
1 millionth of a millisecond for the hardware clock cycle on a 1 GHz processor).

How to approximate the continuous time dynamics in discrete time is the topic of numer-
ics, a well-established field of applied mathematics. For numerical solutions of deterministic 
differential equations, consult Braun (1993); for numerical solutions of stochastic differential 
equations, consult Kloeden and Platen (1999). Here we outline only the main ideas.

Let’s say we want to numerically solve this differential equation, the deterministic version 
of Equation B1.4:

                                      .!u f u= ( )   (B1.5)

We assume that we have a computational cycle that allows us to provide estimated values, 
u ti( ), of the time course of u(t) at the discrete times, t i ti = ∆ . Here, ∆t, is the time step and we 
have used an index, i = …0 1 2 3, , , , to count the discrete time events. The classical and simplest 
approach is called the Euler method and is based on approximating the derivative, !u, around one 
of the sample times, ti, by the differential quotient:

                              !u t
u t u t

ti
i i( ) ≈ ( ) − ( )−1

∆
  (B1.6)

If you don’t remember this from high school, look it up, even on Wikipedia. It is easy to fig-
ure out. If you insert this into Equation B1.5, multiply by ∆t  and add u ti−( )1 , you obtain the Euler 
formula:
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             u t u t t f u ti i i( ) = ( ) + ( )( )− −1 1∆ .   (B1.7)

In this derivation, you will first find that the function f u ti( )( ) on the right-hand side should 
be taken at the current time step, ti. That leads to the “implicit Euler” method. When the time 
step is sufficiently small, we may approximate this value of the function by its value at the 
previous time step, f u ti−( )( )1 , as in Equation B1.7. This is easy to implement in a numerical pro-
gram: Initialize the time series by setting u t1( ) to the initial condition. Then loop through the 
discrete times, computing at each iteration step the next value of u ti( ) based on Equation B1.7, 
which makes use only of the previous value, u ti−( )1 . The time step, ∆t, must be small enough 
that it can sample the time courses of activation. Near an attractor, the timescale of u t( ) is given 
by the relaxation time, τ, illustrated in Figure 1.11. The time step needs to be smaller than the 
relaxation time: ∆t " τ. In practice, our neural dynamics is usually close to an attractor, whose 
stability helps keep the numerics stable. We often get away with a Euler step that is only about 
10 times smaller than the relaxation time.

When noise comes into the picture, things are a bit different, a fact sometimes overlooked 
by modelers. The Euler formula for the stochastic differential equation B1.4 reads:

        u t u t t f u t t q ti i i i( ) = ( ) + ( )( ) + ( )− − −1 1 1∆ ∆ .ξ   (B1.8)

Note that the noise term scales differently than the deterministic term with the Euler  
step, ∆t.

There are much better numerical procedures for solving deterministic differential equa-
tions. These get away with a larger Euler step to achieve the same precision. In fact, MATLAB 
considers the Euler method so outdated that it doesn’t include the Euler algorithm any longer 
in its library (it is easily programmed by hand, of course). In practice, we still use this simplest 
and worst (from the point of view of numerics experts) algorithm. First, it is good enough. 
Second, it lends itself to implementation on robots, on which we also take sensor readings 
at every time step. The more advanced algorithms take into account multiple samples of the 
dynamical variable at multiple time steps, and many also vary the time step, ∆t, depending 
on how strongly the solution varies. Neither is well suited to updating the sensor data. For 
sensor data, we want to go as fast as we can to track any changes in the input. So we are not 
so interested in using the largest Euler step that delivers acceptable precision. A final issue 
is that the more advanced methods for stochastic differential equations are quite complex, 
requiring a considerable number of estimates and auxiliary variables to be iterated. Although 
those methods scale better with the time step in principle, the amount of computation needed 
at each time step can be quite large, more than offsetting the advantage gained by the larger 
Euler step.

Any initial level of activation will thus remain 
unchanged over time. But what happens when ran-
dom perturbations impact the activation variable? 
A random perturbation can be modeled as a random 
kick that generates a non-zero rate of change for a 
short (infinitesimal) moment in time (see Box 1.4 for 
a brief tutorial in stochastics). The random pertur-
bations may be distributed as a Gaussian, as hinted 
at in the figure, so large kicks are less frequent than 
small kicks, the average kick size being zero. Kicks 
at different times are assumed to be independent 

of each other. Such random inf luences are called 
Gaussian white noise, ξ t( ), and form a good model of 
sources of stochasticity, based on fundamental laws 
of probability (Arnold, 1974). Formally, the neural 
dynamics with noise can be written as

 τ ξ!u t= ( ).  (1.2)

Any time a positive kick is applied, activation 
increases. Every time a negative kick is applied, acti-
vation decreases. Over time, activation performs a 



 Neural Dynamics 21

random walk, as illustrated in Figure 1.8, in which 
multiple time courses obtained by different sam-
ples of the noise process are shown. As is apparent 
from those simulations, the variance of the random 
walk increases boundlessly! This is essentially the 
law of Brownian motion, first modeled mathemati-
cally by Einstein (1905). Intuitively, this increase of 
variance comes from the fact that there is no sys-
tematic restoring force that pushes activation back 
to the starting value. If perturbations have driven 
activation to a certain level, say, a positive level, 
future kicks are just as likely to further drive activa-
tion away from the starting level as they are to drive 
levels of activation back to the starting level.

Clearly, this model is missing something to 
become functionally meaningful:  It is missing a 
restoring force that keeps activation within bounds. 
Such a restoring force would have to ensure that 
when large positive activation levels have been 
reached, the probability of negative rates of change 
becomes much larger than the probability of posi-
tive rates of change so that kicks back toward lower 
activation levels become prevalent. Analogously, 
when very negative activation levels have been 
reached, the probability of positive rates of change 
must become larger than the probability of nega-
tive rates of change. Figure 1.9 illustrates such 

probability distributions. They are centered on a 
line with a negative slope, so that, in fact, the mean 
rate of change is negative far out on the positive 
activation axis and positive far out on the negative 
activation axis.

Mathematically, this model can be written as

 τ !u u th= − + + ( )ξ .  (1.3)

Its deterministic portion is illustrated in Figure 
1.10. Here, –u makes the straight line with the nega-
tive slope. By adding a negative constant, h < 0, we 
have shifted the straight line downward, so that it 
intersects the activation axis at u h0 = . That inter-
section point is called the resting level of activation. 
It is formally the solution of

 τ !u = 0.  (1.4)

This solution is a fixed point, a constant solution, 
u(t) = h, of the dynamics (see Box 1.3). This fixed 
point is also an attractor, defined by the fact that 
activation converges at the fixed point over time 
from any initial activation level in the vicinity of the 
fixed point. Our earlier reasoning that activation 
levels remain bounded explains this convergence 
as well: If activation starts at levels higher than that 
of the fixed point, then the neural dynamics has 

Time, t

u(t)

Resting
level

u
Resting level

Probability distribution
of perturbations

u

FIGURE 1.8: Top: A neural dynamics is illustrated by plotting the rate of change of activation, !u , against activation, 
u. In this case, the mean rate of change is zero across all levels of activation, but random rates of change are drawn 
independently at each moment in time from a Gaussian distribution (which is illustrated for the level of zero activa-
tion; this distribution is meant to extend from the page, the same distribution would exist for every level of activation). 
Bottom: Different time courses of activation, u(t), that are generated by this stochastic neural dynamics are shown as 
functions of time, t. All trajectories start at the same level of activation, labeled “resting level,” but evolve differently 
because different samples are drawn from the probability distributions.



22 Fou n dat ions  of Dy na m ic  Fi e l d T h eory

negative rates of change, which implies that acti-
vation will decrease and, thus, approach the fixed 
point from above. If activation starts at levels lower 
than that of the fixed point, positive rates of change 
imply that activation will grow, approaching the 
fixed point from below. It is thus the negative 
slope of the rate of change around the fixed point 
that imposes the stability constraint. The level of 
activation at the fixed point is the stable activation 
state. The negative slope of the rate of change at the 
fixed point thus brings about stability.

A more formal way of seeing the convergence to 
the fixed point is to solve the differential equation. 
Box 1.3 shows how to do this analytically. More 
commonly, in DFT we solve differential equations 
numerically on a digital computer (see Box 1.4 for 
a review of numerics). Such numerical simulations 
formally instantiate the iterative account we have 
been using intuitively. Time is sampled at discrete 
times separated by a small time step ∆t. The time 
course of activation, u(t), is approximated by a 
discrete time sequence, u ti( ), where t i ti = ⋅∆  and 
i counts discrete time, i = 0 1 2, , ,....  In the simplest 
numerical procedure (called the Euler formula), the 
time sequence may be obtained from the approxi-
mation of the rate of change

 !u
u t u t

t
i i≈

( )− ( )−1

∆
.  (1.5)

Inserting this into the dynamics (still neglect-
ing noise), we obtain after some rearranging 
of terms:

u

Fixed point
attractor

u

FIGURE 1.10: Dynamics of a single neural activation vari-
able of the form, τ!u u h= − + , illustrated by plotting the rate 
of change of activation, !u, against activation, u, itself. The 
intersection with the activation axis at the resting level 
is an attractor, a stable fixed point. Along the activation 
axis, arrows show the direction of change. The length of 
the arrows indicates the rate of change, which approaches 
zero near the attractor.
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Resting level

Resting
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FIGURE 1.9: This figure is analogous to Figure 1.8, but now the mean rate of change is a function of the activation level 
illustrated at the top by the straight line with negative slope. Two examples of probability distributions are illustrated. 
The one on the right is centered on a negative rate of change; the one on the left is centered on positive rate of change. 
Their means lie on the straight line. The different samples of the activation trajectories shown at the bottom now remain 
bounded and are centered on the resting level.
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 u t u t t u t hi i i( ) = ( )+ − ( )+ − −1 1
∆
τ

.  (1.6)

On the right-hand side, only values of u at the ear-
lier time ti−1 are needed. They determine the value 
of activation at the next time step, ti , on the left-hand 
side. In other words, this is an iterative equa-
tion: Starting with some initial value of activation, 
future values can be obtained by iterating the equa-
tion in discrete time into the future. (Numerical 
solutions of the stochastic version, Equation 1.3, of 
the dynamics are discussed in Box 1.4).

Figure 1.11 illustrates time courses obtained 
this way. Different solutions were obtained by 
setting different initial conditions, u(0), so that 
activation starts out at different levels. Clearly, 
independently of the different initial levels, activa-
tion converges in all cases to the fixed point at the 
resting level. This convergence, often called relax-
ation, takes the form of an exponential decay of the 
difference from the fixed point, a characteristic of 
the solutions of linear equations. The time constant 
of the exponential decay is the parameter τ. That 
is why we said earlier that τ fixes the units of time. 
This time constant is also called the characteristic 
time or relaxation time of the neural dynamics.

The last step needed to make sense of neural 
dynamics is to consider inputs to the dynamics, 
which may originate from the sensory surfaces or 
from other activation variables. In neural dynamics, 

inputs are contributions to the rate of change. 
Positive contributions are excitatory inputs; nega-
tive contributions are inhibitory inputs. To be spe-
cific, consider an input from a sensory system, s(t), 
that varies in time. Figure 1.12 illustrates how the 
neural dynamics changes as the input increases 
from zero to a positive value, s0, in an abrupt step. 
Because the input does not depend on the activation 
level itself, its increase shifts the entire dynamics, 
that is, the negatively sloped function of activation 
upward. As a result, the zero-crossing moves to the 
right, from the resting level h, to a positive value, 
the new fixed point at h s+ 0. The system was ini-
tially at resting level, but because that is no longer a 
fixed point, activation begins to change. Activation 
relaxes exponentially to the new fixed point, with 
the same time constant with which it relaxes to 
the resting level in the absence of input. Note that 
what has an impact on other neurons is not acti-
vation itself but the output of the activation vari-
able, obtained by applying the sigmoidal threshold 

u

h + s

Input, s

Resting
level, h

Time, t

u(t)

Resting level, h

g(u(t))

Input, s(t)

u

FIGURE 1.12: Top: The neural dynamics τ!u u h s t= − + + ( ) 
is illustrated. The gray line reminds us of the dynamics 
without input, s(t), that has a fixed point at u = h, the rest-
ing level. Input shifts the rate of change upward, leading to 
a new fixed point at u =  h + s. Bottom: The resulting acti-
vation trajectory, u(t) (solid line), is shown together with a 
sketch of the associated input, s(t) (dashed line). The dotted 
line shows the output of the activation variable obtained by 
applying the sigmoid threshold function to the activation 
trajectory.
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Resting
level

τ = 100 ms
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FIGURE  1.11: Three activation trajectories are shown 
as functions of time. These were obtained by numeri-
cally solving τ!u u h= − + . Activation converges (“relaxes”) 
to the resting level, h, from different initial values. The 
time, τ, that it takes to reduce the initial distance from the 
attractor by 36.8% (the reciprocal of the Euler number e) 
is marked by the dashed vertical line. This time is indepen-
dent of the absolute level of initial activation and defines 
the timescale of the dynamics.
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function to the activation variables. Figure 1.12 
shows the time course of this thresholded output 
level. While activation responds to a step change of 
input with an exponential time course, the output 
level has a more abrupt time course.

One can see here that the attractor structures 
the time courses of activation. The attractor itself 
may move, even jump. Activation changes smoothly, 
tracking and at all times moving toward the attrac-
tor. In this simple case of a single activation variable 
driven by a single input, the neural dynamics acts as 
a low-pass filter, smoothing the time course of input 
on the characteristic timescale, τ.

Exercise 1.1 gives you the opportunity to explore 
through an interactive simulator how the neural 
dynamics generates continuous time courses out of 
potentially discontinuous inputs. Next we will look 
at how more complex neural dynamics may do the 
opposite—transform continuous inputs into dis-
continuous activation time courses that represent 
the simplest form of decision making, the decision 
that an input has been detected.

SE L F-E XC I TAT ION  A N D  T H E 
DE T E C T ION  I NSTA BI L I T Y
All of this discussion has been about a single acti-
vation variable receiving external input. Now we 
will look at neural interaction. Neural interaction 
refers to the dependence of the rate of change of an 
activation variable on input from other activation 
variables. Neural interaction includes, therefore, 
the forward neural connectivity that character-
izes many connectionist networks. More typically, 
however, neural interaction refers to patterns of 
coupling that include recurrent loops of connectiv-
ity. A limit case that we will use as a starting point 
here is the neural dynamics of a single activation 
variable that receives excitatory input from itself. 
That is the simplest form of recurrent neural con-
nectivity, a network consisting of only one neu-
ron that connects back onto itself, as illustrated 
in Figure 1.13. Such circuits exist in the CNS, but 
we will see in Chapter 2 that this limit case really 
stands for the neural dynamics of small populations 
of neurons that are mutually coupled through excit-
atory connections. Mathematically, self-excited 
neural dynamics can be formulated by adding a sin-
gle term to the rate of change considered thus far:

 τ !u u h s t c g u= − + + ( )+ ⋅ ( ) ,  (1.7)

where the parameter c > 0 represents the strength 
of the self-excitatory contribution. The sig-
moid threshold function, g(u), was illustrated 
earlier (Figure 1.1) and can be formalized 
mathematically as

 g u
u

( ) =
+ −( )

1
1 exp

.
β

 (1.8)

Consistent with the concept of activation, only suf-
ficiently positive levels of activation have an impact 
on other activation variables, which is assured by 
passing activation through the sigmoidal function, 
g(u). This mathematical formulation highlights 
how input is dependent on the activation level, u, 
which is the signature of neural interaction. Note 
that the dependence of the rate of change of activa-
tion on the activation variable itself through the –u 
term is not part of neural interaction, as this term 
does not represent input but establishes the intrin-
sic neural dynamics that generates stability.

Figure 1.14 illustrates this neural dynamics 
with self-excitation. For very negative activation 
levels, the sigmoid yields zero and we have the lin-
ear dynamics from before. For very positive activa-
tion levels, the sigmoid yields a constant (here 1) so 
that the linear dynamics is shifted upward by c.  
The sigmoid connects these two regimes, leading 
overall to a nonlinear dynamical system. A dynami-
cal system is nonlinear whenever the dependence of 
the rate of change on the current level of the acti-
vation variables is not a straight line. Figure 1.14 
shows that without external input, s(t) (and for 
sufficiently negative h and sufficiently small c), the 
dynamics does not change qualitatively over the 
linear dynamics. There is still a single attractor at 
the resting level and the rate of change is negative 
everywhere to the right of that attractor. The sys-
tem is “monostable” around the resting state, mean-
ing there is only a single attractor along the entire 

c

s

FIGURE  1.13: The dynamics of a single activation vari-
able, illustrated by a circle filled in gray, is represented in 
the manner of neural networks. Excitatory external input, 
s, is indicated by an incoming arrow. Self-excitatory neural 
interaction is illustrated by a single recurrent loop ending 
in an arrow. The strength of that input is modulated by the 
parameter, c.
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activation axis. That is the attractor in which acti-
vation would settle.

If excitatory input of increasing strength is 
applied, the dynamics is shifted upward, as shown 
in Figure 1.15. At some point, the nonlinear 
dynamics touches the activation axis at positive 
activation levels and, with just a little more input, 
two new fixed points arise. The one at a higher, 
positive level of activation is an attractor, as can be 
recognized by the negative slope of the dynamics 
at that fixed point. The sigmoid threshold function 
applied to this attractor level of activation yields 
values above zero, so that this attractor represents 
an “on” state of the activation variable. The fixed 
point at a somewhat lower level of activation (close 
to zero) is a repellor, which can be inferred from the 
positive slope of the dynamics at that fixed point. 
Small deviations from the repellor are amplified by 

the dynamics: Deviations to the right are linked to 
positive rates of change, so activation grows fur-
ther away from the repellor; deviations to the left 
are linked to negative rates of change, so activa-
tion decreases away from the repellor. The repel-
lor therefore divides the activation axis into two 
regimes that are called basins of attraction. One 
leads to the new “on” attractor, the other to the old 
“off ” attractor at negative levels of activation. This 
is illustrated in Figure 1.16, where the dynamics at 
this point is solved numerically, starting with dif-
ferent initial conditions. Starting at larger activa-
tion levels than the repellor leads to convergence 
to the new on-attractor; starting at lower activation 
levels than the repellor leads to convergence to the 
old attractor, at negative activation levels.

Although the new fixed points appear as input is 
applied, activation is not yet affected by them. Before 
input arrived, the system was sitting in the “off” attrac-
tor. When input arrived, that attractor (left-most 
attractor in Figure 1.15) shifted somewhat, but the 

u

Time, t

u(0)<0

u(0)>0

u

u(t)

FIGURE 1.16: Top: Dynamics of a single activation vari-
able with self-excitation, τ!u u h s t c g t= − + + ( )+ ⋅ ( ), in the 
presence of external input, s(t) = constant of intermediate 
strength. The dynamics has an attractor at a negative acti-
vation level (circle filled in solid black) and another one at 
a positive activation level (circle filled in light gray), sepa-
rated by a repellor at zero activation level (circled filled in 
dark gray). Bottom: Simulated activation trajectories con-
verge to the positive attractor (dashed line in light gray) 
when started at positive initial activation levels (light 
gray curves) and to the negative attractor (dashed line in 
solid black) when started at negative initial activation lev-
els (solid black curves). This shows that the dynamics is 
bistable.
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FIGURE 1.14: The neural dynamics of a single activation 
variable with self-excitatory neural interaction is shown in 
the absence of external input, s.
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FIGURE  1.15: The neural dynamics of a single activa-
tion variable with self-excitatory neural interaction in 
the presence of increasing amounts of external input, s, is 
illustrated by graphs going from light gray to solid black. 
Circles filled by matching gray levels mark the fixed 
points. Note that the three inner fixed points are unstable.
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activation variable tracks that shift. A  qualitative 
change is brought about only when the “off” attractor 
becomes unstable, as input is further increased. The 
repellor moves toward the “off” attractor at negative 
activation and ultimately collides with it, annihilat-
ing the attractor. The dynamics lifts off the activation 
axis and no attractor remains at negative levels of acti-
vation. At this point, activation can no longer remain 
around the off-state. Activation will vigorously grow, 
converging to the “on” attractor on the right.

This phenomenon, the disappearance of an 
attractor, is associated with a loss of stability (see 
Box 1.3). The slope of the dynamics at the attractor 
becomes f lat just before the attractor disappears. 
This means that the restoring force that drives 
activation back to the attractor after a perturbation 
becomes weaker. This is why such a change of the 
dynamics around an attractor is called an instabil-
ity. Mathematicians prefer the term bifurcation, 
as such instabilities always involve multiple fixed 
points colliding or splitting.

The instability is a significant event, even 
though it happens only at one particular level of 
input and even though the system quickly moves 
away from the now unstable and then vanished 
attractor. This is because instabilities separate 
different dynamic regimes. Before this instability 
the system is bistable, it has two attractors at its 
disposal—the “on” state at positive levels of activa-
tion and the “off ” state at negative levels of activa-
tion. After the instability only the “on” state is left, 
which is now monostable.

We call this instability the detection instability 
because when it is run through in the order narrated 
here, with increasing input from bistable to mono-
stable, it generates the “decision” that significant 
input has been detected. That decision is ref lected 
by the fact that the activation level goes through 
zero, so that the sigmoidal threshold function goes 
from zero to a positive value. Note that this decision 
mechanism differs from the classical notion of sig-
nal detection theory, in which a detection decision 
is made when a criterion level is exceeded. In the 
detection instability, the detection decision is stabi-
lized. That is, once the decision has been made, it is 
maintained even if in the next moment in time the 
input strength falls back below the critical level due 
to sensory noise, for instance. The system remains in 
the “on” attractor because the system is bistable. In 
classical threshold thinking, by contrast, a decision 
is a momentary event that is not stabilized per se. If 
we were to use such threshold thinking in the con-
text of dynamical systems thinking we would run 

into problems. This is because in dynamic thinking, 
the decision variable activation is updated continu-
ously in time based on time-varying sensory inputs. 
A  threshold mechanism would perform poorly 
then: A “yes” decision would often be followed by a 
switch to a “no” and perhaps a switch back to “yes” 
as sensory inputs f luctuate. Thus, continuous time 
decision-making in noisy sensory environments 
really requires that decisions are stabilized. We will 
return to this point in Chapters 2 and 4.

When input strength drops to sufficiently low 
values, however, the detection decision is undone 
as the bistable regime merges into the monostable 
“off ” regime. This is the first instability we dis-
cussed earlier that happens at lower levels of input, 
on the right side of the graph in Figure 1.15. We refer 
to that instability as the reverse detection instability, 
which marks the point at which the loss of a detec-
tion is signaled. Again, this decision is stabilized. If 
input strength rises beyond this lower critical level, 
then the non-detection decision is maintained.

Together, these two instabilities form the 
basis of a phenomenon called decision hyster-
esis: The critical level at which a detection is sig-
naled depends on the direction of change of input 
strength. This is illustrated in Figure 1.17, which 
traces the attractor state realized when stimulus 
strength is increased or decreased. Empirically, 
hysteresis is ubiquitous in perceptual psychophys-
ics. In fact, hysteresis has been known from the 
earliest days of psychophysics as the dependence 
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FIGURE 1.17: The dynamics of a single activation variable 
with self-excitation, τ!u u h s t c g t= − + + ( )+ ⋅ ( ), is simulated 
when external input, s(t), is first increased, then decreased, 
in both cases linearly over time. The resulting activation 
level is shown as a solid line for increasing input and as a 
dashed line for decreasing input (plotted against a reversed 
time axis). The dependence of the realized activation 
level on the direction of change of input is a signature of 
hysteresis.
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of perceptual judgments on the direction of stim-
ulus change (Stevens, 1957). It has often been 
attributed to time delays in perceptual processing 
so that judgments are based on past rather than on 
present stimuli, as well as on inertia of response, so 
that past judgments inf luence current judgment.  
Hysteresis was typically eliminated from data by 
averaging judgments made for the two directions 
of stimulus change. There is a growing body of 
work, however, that shows that there is a purely 
perceptual component to hysteresis. This comes 
from very carefully designed studies in which fac-
tors such as stimulus uncertainty, response delay, 
and response mode have been excluded or mini-
mized (Hock & Schöner, 2010). An example is the 
detection of apparent motion. Apparent motion 
is visual motion seen between locations on the 
visual array at which there is luminance change. 
This is how we see motion from sequences of still 
images as in the movies or on TV. In the labora-
tory, the probability of seeing apparent motion can 
be manipulated by varying a stimulus parameter, 
the background relative luminance contrast, or 
BRLC. Higher values induce motion, and low val-
ues induce a f lickering percept without a motion 
direction. When BRLC is gradually increased, 
motion is first detected at higher values of BRLC 
than those at which observers lose the motion per-
cept when BRLC is gradually decreased (Hock, 
Kogan, & Espinoza, 1997). This instance of 
hysteresis thus matches quite closely the neural 
dynamic phenomenon illustrated in Figure 1.17.

A related conceptual point is illustrated nicely 
by the detection instability. Although the neu-
ral dynamics evolves in continuous time and the 
activation variables change values continuously, 
events emerge from the neural dynamics at discrete 
moments in time. Consider, for instance, a stimu-
lus, s(t), that gradually increases in strength. The 
detection instability translates this gradual change 
into a discrete jump of activation from the off- to 
the on-state when stimulus strength reaches a criti-
cal level. That jump occurs at a discrete time, the 
time at which the system goes through the insta-
bility and makes the transition. Discrete time is 
not inherent in the dynamical system, unlike in a 
digital computer whose computation progresses at 
discrete times is driven by its clock cycle. Time for 
the dynamical system runs continuously. From that 
continuous evolution of the neural dynamics the 
detection event emerges at a discrete moment in 
time through the detection instability.

The detection instability also illustrates a final 
conceptual point. In DFT, the attractors are not 
“sitting” somewhere in the neural dynamics, “wait-
ing” for the system to “fall into” them. Instead, the 
attractors arise on the f ly. Without sufficient sen-
sory input, the “on” attractor does not exist. It arises 
anew when input reaches a critical level, which hap-
pens to be the level at which the reverse detection 
instability occurs. Only from then on is the attrac-
tor “around,” available for the system to move to it. 
That decision, to go to the “on” attractor, is brought 
about by a separate instability, the detection insta-
bility, which makes the “off ” attractor unstable and 
destroys it. There are neural network models, such 
as the Hopfield model (Hopfield, 1982) or the brain 
state in a box model (Anderson, Silverstein, Ritz, 
& Jones, 1977), in which many attractors coex-
ist at the same time, built into the neural network. 
In such models, a perceptual decision consists of 
relaxing from an initial state, set by the stimulus, 
to the nearest attractor. In a sense, such neural 
networks implicitly invoke information process-
ing as a concept: The network is given an input at 
a discrete time. It then runs to an attractor, which 
may be considered its output. That “response” must 
somehow be “read” by some other system. There 
is nothing inside the network that would signal 
that the network is “done,” that it has finished its 
“computation.” This task lies outside the network. 
In contrast, we think of behavior as unfolding in 
continuous time in DFT. The neural dynamics 
evolves continuously, receiving inputs that may 
vary, perhaps even just because the behavior moves 
the sensors around. The time-varying inputs may 
move the attractors around. But because the neural 
dynamics is almost always in an attractor it follows 
those changes and tracks the attractor. This entire 
process goes on continuously until an instability 
occurs that triggers a detection event. The neural 
dynamics shifts to a new attractor and behavior 
changes. In the new neural attractor, the system is 
again ready to track any further changes in input. 
All of this is autonomous, no other system is needed 
to “read” the output or “know” when the dynamics 
is done computing. (In Chapter  4 we will discuss 
in detail the closed sensory-motor loop that was 
invoked here.)

SUSTA I N E D  AC T I VAT ION  A N D 
WOR K I NG   M E M ORY
The hysteresis of detection is a first indication that 
in neural dynamics the stimulus does not uniquely 
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determine the inner state of the CNS. Through 
hysteresis that inner state depends on the history 
of stimulation and activation. Working memory 
pushes this idea further. In working memory, the 
inner state of the CNS ref lects perceptual events 
in the past while the associated sensory stimula-
tion is no longer available on the sensory surfaces. 
The simple neural dynamics of a single activation 
variable with self-excitation provides a first model 
of working memory in the form of sustained activa-
tion (Fuster, 1995; Fuster & Alexander, 1971). The 
memory function emerges when the bistable coex-
istence of the on- and off-state extends all the way 
to zero input strength. Figure 1.18 illustrates this 
idea. In the figure, the neural dynamics without 
input, s(t), is already bistable. This may be because 
the resting level is high enough for self-excitation 
alone to be sufficient to lift activation above zero. Or 
it may arise because the strength c of self-excitation 
is sufficiently large for self-excitation to push activa-
tion above zero once positive activation levels have 
been reached. This neural dynamics has, therefore, 
an off- and an on-state even without any external 
input, s(t).

If the activation variable starts out in the 
off-state, a sufficiently strong input, s(t), will lift 
the dynamics up, beyond the detection instability, 
eliminating the off-state and inducing a switch into 
the on-state. The activation trajectories in Figure 
1.18 show how this happens. When the input is 
again removed, the activation variable tracks the 
on-attractor, which drops to lower activation lev-
els but persists in the absence of input. The neural 
dynamics remains on, ref lecting a memory of past 
stimulation. In principle, the system may remain 
indefinitely in this self-sustained state.

Models that take into account the possibility that 
multiple activation variables may represent multiple 

different stimuli explain additional characteristic 
features of working memory, such as a limited mem-
ory capacity. This will be a topic in Chapter 2 and 
discussed in greater detail in Chapter  6. We will 
also address more specifically how memories may 
be reset through inhibition and how working mem-
ory may be controlled. But the basic mechanism is 
already contained in this simple model.

I N H I B I T ORY  I N T E R AC T ION 
A N D  SE L E C T ION
We are finally ready to move beyond a single activa-
tion variable. Two activation variables form the sim-
plest true neural network, depicted in Figure 1.19. If 
the two activation variables excite each other, the 
dynamics is not much different from the case just 
discussed, including detection instabilities and the 
potential for sustained activation. In fact, we will 
see in Chapter 2 that the single self-excited activa-
tion variable really stands for a local population of 
activation variables that are mutually coupled in an 
excitatory fashion.

Something new happens, however, if we con-
sider inhibitory neural interaction. Mathematically, 
the two activation variables, u1  and u2, have these 
neural dynamics:

      τ ξ!u u h s t c g u t1 1 1 12 2 1= − + + ( ) − ⋅ ( )+ ( )  (1.9)

τ ξ!u u h s t c g u t2 2 2 21 1 2= − + + ( ) − ⋅ ( )+ ( )  (1.10)

Here, both variables share the same resting level, h, 
but have their own external input, s t1 ( ) and s t2 ( ), 
respectively, as well as their own noise sources, ξ1 
and ξ2 . Interaction or coupling means that activa-
tion variable u2 contributes to the rate of change of 
activation variable u1 and vice versa. Again, as for 
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FIGURE  1.18: Left:  The dynamics of a single activation variable with self-excitation, τ!u u h s t c g t= − + + ( )+ ⋅ ( ), when 
self-excitation is strong (solid line) compared to when it is weak (dashed line). In both cases, no external stimulus, s(t), 
is present. Right: For the larger self-excitation, the time courses show how the activation variable (solid black line) goes 
through the detection instability when a stimulus (gray line) is presented, but then remains in the on-state when the 
stimulus is removed.
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self-excitation, only positive levels of activation 
have an impact on other activation variables, so the 
interaction is mediated by the sigmoidal threshold 
function, g(·). The coupling is inhibitory because 
the contribution is negative (see Equations 1.9 
and 1.10, assuming strengths, c12 0>  and c21 0> ). 
The symmetric form of interaction is called mutual 
inhibition.

Clearly, if both activation levels are below 
zero, no interaction happens given the sigmoidal 
threshold function. So for something interest-
ing to happen, assume both activation variables 
receive positive inputs, s1 and s2, that would be suf-
ficient to produce positive activation levels if the 
variables were not coupled. To understand mutual 
inhibition, we examine different cases. Assume 
that activation variable u2 already was at a posi-
tive level of activation before u1 left its resting level. 
This situation may have arisen because u2 received 
input earlier than u1 or because the input to u2 was 
stronger than the input to u1. The sigmoidal func-
tion on u2 then yields a value of 1, so that the inhibi-
tory inf luence of u2 on u1 manifests itself, pulling 
the rate of change of u1 down by c12. Figure 1.20 
illustrates what this implies. Were it not for that 
inhibitory input, u1 would have a single attractor 
at the on-state, ref lecting its significant input, s1.  
The downward shift of the rate of change caused by 
inhibition from u2 moves the attractor to the left, 
into the negative activation regime. As a result, the 
sigmoid of u1 yields zero, so that u1 cannot, in turn, 
inhibit u2. Activation variable u2 has won the com-
petition set up by mutual inhibitory coupling.

The reverse outcome is expected if activation 
at u1 had risen above zero before activation at u2 
had a chance to do so. In neural dynamics, selec-
tion among multiple activation variables that all 
receive significant input is generally sensitive to 
the temporal order of activation. From Chapter  2 
on we will be looking at many activation variables 
that are inhibitorily coupled. In such systems, the 
activation variables receiving the strongest input 

will grow fastest and reach zero first. They can then 
begin to suppress the other variables and win the 
competition. What determines how “strong” an 
input is in a neural network? We have used only this 
simple image of one input strength per activation 
variable. In more complex neural networks, inputs 
are patterns defined over the input layer. That input 
layer connects through a forward synaptic pattern 
onto the neural network. A  neuron in the neural 
network receives a strong input if the input pattern 
“matches” the synaptic pattern of forward connec-
tivity. An input pattern matches if input units that 
are connected through a strong excitatory synapse 
to the given neuron are maximally stimulated, and 
input units that have no excitatory or even an inhib-
itory synapse on the given neuron are minimally 
stimulated. Better matching of an activation vari-
able to input in this sense thus translates into larger 

s1

u1 u2

s2
c12

c21

FIGURE 1.19: The dynamics of two mutually inhibitory 
activation variables, each shown as a circle filled in gray, is 
illustrated in the manner of neural networks. Arrows indi-
cate excitatory external inputs. Lines ending with an open 
circle indicate inhibitory coupling.

u1

u2

u1Inhibition
from u2

u2

h+s1–c12

h+s1

h+s2

FIGURE  1.20: The dynamics of two activation vari-
ables that interact through mutual inhibition and both 
receive external input (s1  and s2) is illustrated by plotting 
separately the rates of change of each activation variable 
against the corresponding activation level. The depen-
dence of the rate of change of each activation variable on 
the other activation variable is taken into account by con-
sidering different cases. Top: The gray line is the dynamics 
of u1when u2 is sufficiently below zero so that the sigmoid 
yields zero. The attractor then lies at h s+ 1. The line in 
solid black is the dynamics when u2 is above zero, so that 
the sigmoid yields 1. This dynamics is shifted down by the 
strength of inhibitory interaction, c12, and has an attrac-
tor at h s c+ −1 12, which lies below zero. Bottom: The solid 
black line is the dynamics of u2 when u1 is below zero. This 
leads to an attractor for u2 at h s+ 2, which is above zero. 
The dynamics outlined in solid black in both plots are thus 
consistent with each other.
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input strength. And that in turn leads to an earlier 
rise in activation, making the activation variable 
dominate the competition.

The discussion regarding Figure 1.20 explains 
how the competition between two activation 
variables unfolds. This explanation suggests that 
the selection decision is stabilized by the neural 
dynamics:  Once one activation variable is excited 
above threshold, it suppresses the other enough 
for that other activation variable to remain below 
threshold. That suppression creates a gap that 
input to the other activation would need to bridge 
for the other activation variable to have a chance to 
get above threshold. In fact, Figure 1.20 shows that 
the attractor of u1 is significantly below zero. Even 
if input to u1 was subsequently strengthened so that 
it became larger than the input to u2, the attractor 
of u1 would remain below zero and the attractor of 
u2 would not move. In fact, there is a bistable range 
in which either selection decision is possible. Once 
locked into one decision, the neural dynamics 
resists change.

The stabilization of selection decisions plays a 
similar functional role as the stabilization of detec-
tion decisions discussed earlier. When a neural 
dynamics makes choices in response to continu-
ously varying and noisy sensory signals, the selec-
tion decision emerges at a particular time and is 
then maintained. Figure 1.21 shows that this is 
true even in the limit case, in which both activa-
tion variables receive the same input and the selec-
tion decision results from chance, as stochastic 
perturbations push one activation variable above 
zero, suppressing the other. This type of bistabil-
ity has limits. If input strengths are very disparate, 
the more strongly stimulated activation variable 
will ultimately overcome competition from the 
other activation variable, even if that variable is 
already above threshold. We will examine this 
case in the context of activation fields in the next 
chapter.

C ONC LUSION
We started this chapter with an image of how the 
CNS generates behavior, linking cognition to per-
ception and action. We intuited that controlling 
movement requires the CNS to have graded inner 
states. In this chapter we have seen how we may 
characterize the inner state of the CNS in terms of 
graded activation.

We postulated that the graded inner state of 
the CNS must evolve continuously over time to 

generate behavior that may, in closed loop, couple 
to continuous sensory information. This led us 
to propose that activation variables evolve con-
tinuously over time, as described by differential 
equations, the neural dynamics central to this 
book. In this framework, sensory information 
contributes to the rate of change of activation. 
Neural coupling among variables means that they 
contribute to each other’s rate of change, either 
positively for excitatory coupling or negatively 
for inhibitory coupling. Only if the inner states 
of the CNS resist random or systematic perturba-
tions from competing neural processes may these 
states generate coherent and persistent behavior 
even as they are coupled to time-varying and noisy 
inputs. Stability is thus a central demand of the 
neural dynamics framework. This demand leads 
to the –u term—the negative slope of the dynami-
cal system—that creates attractor states within the 
system. When attractors change with time-varying 
inputs, the activation level tracks those changes, 
thanks to the –u term.

u
u(t)
s(t)

uh+s–c
h+s–c

h + s

h+s

Time, th

h

FIGURE 1.21: Left: The dynamics of one of two compet-
ing activation variables is plotted in three cases: without 
external input (solid), and with external input but without 
(dotted) versus with (dashed) inhibition from the other 
activation variable. The attractor is at resting level, h, in 
the first case; is shifted to the positive level of h + s, in the 
second case; and is shifted back to the negative level of h + 
s – c, in the last case. We have omitted the subscripts from 
s and c that refer to either variable. Right: Activation tra-
jectories for both activation variables are shown (one in 
solid black, the other in solid gray). These were obtained 
from a numerical simulation that included noise. The 
gray dashed line illustrates at which time input, s(t), was 
applied. The thin dotted lines mark the annotated levels of 
activation. Note that both activation variables receive the 
same input and both initially rise parallel to each other. 
Near zero, random f luctuations tip the balance in favor 
of the activation variable shown in black, which reaches 
threshold slightly earlier and begins to suppress the other 
activation variable. Toward the end of the simulation, the 
dynamics of the black variable corresponds to the dotted 
line in the left panel, while that of the gray variable cor-
responds to the dashed line.
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Finally, we saw how the demand for stabil-
ity leads to the need for instabilities or bifurca-
tions. Decisions require change from a pre- to a 
post-decision state. And change can only occur if 
the resistance to change, stability, is overcome. We 
saw specifically that self-excitation (or, similarly, 
mutual excitation) leads to the detection instabil-
ity, beyond which on-states are stabilized. Mutual 
inhibitory interaction leads to selection decisions, 
which are likewise stabilized but may undergo a 
selection instability when an alternative receives 
much stronger input than the selected choice.

Stability, we argued, would enable activation 
variables to link to time-varying sensory inputs. In 
the examples we looked at, the level of activation  
tracked the strength of input. What if the sensory 
input changes along dimensions other than its 
strength? What if a visual stimulus moves on the 
retina even as it retains its brightness or contrast, 
for instance? What we have laid out does not answer 
that question. More generally, how do particular 
activation variables come to be linked to particu-
lar kinds of sensory inputs? How does a portion of 
the retina, for instance, link up to a particular set 
of activation variables? When we think of selec-
tion decisions, the lack of an answer to this ques-
tion becomes painfully obvious:  How does one 
activation variable come to stand for one choice, 
the other for another choice? If the choices them-
selves change, how is such a mapping updated, 
and how does an activation variables still “know” 
which choice it stands for? In the next chapter we 
will place the ideas of neural dynamics in a broader 
context that provides answers to these questions. 
We will discover that activation is not only graded 
in activation level, and continuous in time, but also 
continuous in (feature) space.
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G E N E R A L  I N F OR M AT ION 
ON   E X E RC I SE S
The exercises in this book use a collection of simu-
lators programmed in the computing environment 
MATLAB. They are available as MATLAB code or 
as independent executable files for different oper-
ating systems. You can obtain all necessary files 
here: http://www.dynamicfieldtheory.org.

Additional instructions for running the simula-
tions can also be found at that site. Each simulator 
implements a specific dynamical system and pro-
vides a graphical user interface (GUI), which visual-
izes the state of the system and allows the user to set 
inputs or change system parameters. The modeled 
dynamical system runs immediately and continu-
ously as soon as the simulator is started (that is, its 
state is regularly updated according to a set of dif-
ferential equations). In some cases this may not be 
obvious from the visualizations because often the 
dynamical system is initially in an attractor state and 
does not change unless external inputs are applied.

Each GUI provides a different set of plots and 
other visualizations, and a set of control elements 

to change system parameters. The most common 
control elements used in the exercises are slid-
ers, which allow you to adjust a certain parameter 
smoothly within a specified range. Note that you 
can click on the arrows on either side of the slider 
to change the parameter value in small, fixed steps, 
or click on the slider bar on either side of the slider 
to change the value in larger fixed steps. The latter 
method is often very useful, for instance, to quickly 
apply several stimuli of exactly equal amplitude to 
the system. Parameter changes made through the 
control elements are applied immediately, and their 
effects can be observed in the visualizations.

Each GUI additionally contains a shared set of 
global control buttons that affect the overall behav-
ior of the simulation. The Pause button suspends 
the continuous update of the dynamical system’s 
state. You may still change parameters while the sim-
ulation is paused, but these changes will only take 
effect once the simulation is continued. The Reset 
button re-initializes all elements of the dynamical 
system and, in particular, sets the activation of all 
dynamic variables and fields back to their resting 
levels. It does not change any parameter values (to 
return to the initial parameter values, you may quit 
and restart the simulation). The Parameters 
button allows you to access the parameters of all 
elements in the dynamical system. It opens a param-
eter panel as a separate window. In this panel, you 
can first select an element via the dropdown menu 
at the top, then view and change its parameters and 
apply these changes by clicking the Apply button 
(changes that are not applied are lost when the ele-
ment selection is changed or the panel is closed).

The Save and Load buttons allow you to 
write the current parameter values to a text file 
in JSON-format and to retrieve parameter values 
from such a file. Only the parameters are stored or 
retrieved, not the state of the dynamical systems. 
In some simulators, these buttons are replaced by a 
preset selection element, consisting of a dropdown 
menu with a list of available presets and a Select 
button. When this button is clicked, the parameter 
file associated with the currently selected preset 
is loaded. Note that upon loading parameters by 
either of these methods, the simulation is always 
re-initialized and the previous state of the dynami-
cal system is lost.

Finally, the Quit button terminates the 
simulation. If you are running the simulation in 
MATLAB, the state of the dynamical system is still 
available in the workspace afterward in the form of 
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a simulator object (named sim by default). A GUI 
object is also retained in the MATLAB workspace, 
and the simulation may be restarted by calling 
gui.run in the MATLAB command window. 
This continues the simulation in the same state that 
it had upon termination.

E X E RC I SE S  F OR   C H A P T E R   1
All exercises use the interactive MATLAB simulator 
launcherTwoNeuronSimulator. This pro-
gram simulates two activation variables, informally 
called neurons, with external input, self-excitation, 
interaction, and noise, as defined by the equations

τ
ξ

1 1 1 1 1

11 1 12 2 1 1

!u t u t h s t
c g u t c g u t q

( ) = − ( )+ + ( )
+ ( )( )+ ( )( )+  (A1.1)

τ
ξ

2 2 2 2 2

22 2 21 1 2 2

!u t u t h s t
c g u t c g u t q

( ) = − ( )+ + ( )
+ ( )( )+ ( )( )+  (A1.2)

In the initial parameter setting most of these terms 
are set to 0 so the actual behavior of each neuron is 
that of a single dynamic activation variable without 
self-excitation and input. You will use this simu-
lator to explore the different dynamical systems 
analyzed in this chapter and get a more practical 
understanding of the role of each parameter for the 
system as a whole.

The simulator GUI shows five sets of axes, 10 
sliders to control parameters of the simulation, and 
five global control buttons. The sliders are used to 
modify the parameters of the dynamical system, one 
slider each for the resting level, h1, the self-excitation 
strength, c11, the strength of the interaction term, c12,  
the variance of the noise, q1, and the stimulus, s t1 ( ), 
and the same for the second neuron. Note the nam-
ing convention for interactions between different 
activation variables or fields that is used through-
out this book. The parameters for such interactions 
have a two-character index (e.g., c12), with the first 
character specifying the target of the interaction 
(here, activation variable u1) and the second char-
acter specifying its source (here, activation vari-
able u2).

The two right-most sets of axes show phase 
plots for the two activation variables. The red line 
shows the rate of change for different activation val-
ues, as specified by Equations A1.1 and A1.2. The 
red dot indicates the current activation value and 
current rate of change of the activation variable, 
and attractor and repellor states in the dynamics 

are marked as squares and diamonds, respectively. 
The two sets of axes in the middle contain trajec-
tory plots, showing the recent history of activation 
states for the two variables, with the present state 
indicated by the blue dot. The single set of axes on 
the left shows the trajectories of the two activation 
variables combined by plotting the activation of 
one variable against the activation of the other one, 
both for the current state (blue dot) and recent his-
tory (blue line).

Exercise 1: Single Dynamic Activation 
Variable with Input
Use the simulator to explore the dynamics of a sin-
gle activation variable with variable input, as speci-
fied by  τ ξ1 1 1 1 1 1 1!u t u t h s t q( ) = − ( )+ + ( )+ .

a) Tracking: Explore how the activation 
variable tracks a shifting input. Use the s1

slider to set the input parameter to different 
values and observe how the zero-crossing 
of the phase plot of u1 is shifted around. 
Observe how the state variable tracks the 
input by relaxing to the new attractor, both 
in the trajectory plot and the phase plot.

b) Relaxation time: Note how the state 
changes faster initially when the distance 
to the new attractor is larger, but the 
overall shape of the relaxation curve is 
always the same. Compare relaxation 
times for different values of τ: Use the 
Parameters button to set τ2 to a 
value that is significantly different from 
the value of τ1 (to do this, select the 
corresponding node in the dropdown 
menu in the parameter panel, enter the 
desired value of τ, and click Apply). 
Use the same resting level and non-zero 
stimulus for u1 and u2, then reset both 
activation variables to observe the 
differences in relaxation time. Do this for 
several different parameter settings.

c) Stability: Set the relaxation time parameters 
to very different values, for example, 10 and 
1000. Add a small amount of noise to both 
systems and observe how the activation 
variable with higher relaxation time deviates 
significantly further from the resting level 
and takes longer to return to it eventually 
(use h = 0, no input, q q1 2= ). How is this 
effect ref lected in the two-dimensional 
combined trajectory plot?
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Exercise 2: Dynamics of a 
Single Activation Variable 
with Self-Excitation
Explore the dynamics of a single neuron with 
self-excitation, as specified by

 τ ξ1 1 1 1 1 11 1 1 1!u t u t h s t c g u t q( ) = − ( )+ + ( )+ ( )( )+  

For this exercise, set the relaxation time parameters 
of both activation variables back to their initial val-
ues,  1 2 20  , and set the resting levels back to 
h h1 2 5= = − . Start with a stimulus amplitude of zero.

a) Detection: Increase the self-excitation 
strength, c11 , of the activation variable to 
a medium value and note the nonlinearity 
emerging in the phase plot. Move the 
system through the detection instability 
by increasing the stimulus amplitude 
systematically. Move the system back 
through the reverse detection instability by 
decreasing the stimulus.

b) Hysteresis: Modify the self-excitation 
and stimulus to put the system u1 into the 
bistable regime, then copy the parameter 
values to u2 in order to create two identical 
systems. Demonstrate the hysteresis effect 
of this system by temporarily varying the 
stimulus of one system. After resetting the 
stimulus to the old value, the activation 
variables of these two identical systems 
should relax to different attractors.

c) Perturbations: Find parameter settings 
for a bistable system with moderate 
self-excitation, reset the system, and let it 
relax to the off-attractor. Subject the system 
to a random perturbation by temporarily 
adding a lot of noise to the system. Does 
the system stay in the off-state after the 

perturbation or switch to the on-state? 
Repeat this process several times and note 
the ratio of returns versus switches. How 
does this ratio change when you vary the 
self-excitation strength?

Exercise 3: Dynamics of Two 
Activation Variables with Mutual 
Inhibition
Explore the dynamics of two neurons with mutual 
inhibition, as specified by Equations

τ
ξ

1 1 1 1 1

11 1 12 1 1

!u t u t h s t
c g u t c g u t q

( ) = − ( )+ + ( )
+ ( )( )+ ( )( )+  (A1.3)

τ
ξ

2 2 2 2 2

22 2 21 2 2

!u t u t h s t
c g u t c g u t q

( ) = − ( )+ + ( )
+ ( )( )+ ( )( )+  (A1.4)

a) Bistability: Set the interaction parameters 
of the system to mutual inhibition  
( ).c c12 21 10= = −  Add a stimulus to u1, then 
to u2. Remove the stimuli and reapply them 
in the opposite order. Note which attractor 
the system relaxes to in each case.

b) Selection: Add a small amount of noise 
to the system and give the same stimulus 
to both neurons. Reset the system several 
times to observe the selection decision 
the system makes. Change the relative 
strengths of the stimuli by a small amount 
and observe how the stronger stimulus is 
favored in the selection.

c) Biases: Reduce the inhibition of one neuron 
while keeping the other one invariant. 
How does this bias the selection decision 
and why?

 

 


