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Background: different notions of binding

Joint representations and coupling patterns 

Binding through space/ordinal dimension

Coordinate transforms

Roadmap Foundations 2: Space-time coupling
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Joint representations don’t scale

2 spatial dimensions

depth 

orientation

color

texture

movement direction

size 

etc… 

e.g.  dimensions

 neurons per 
dimension

!

more than there 
are in the entire 
brain!

8

100

102*8 = 1016

=>

=> only small sets of 
feature dimensions 
can be represented 
jointly



Joint representations are not flexible

needs dedicated substrate for every possible 
combination 

does not account for mis-bindings 



Binding through shared dimensions

separate fields for joint representations of 
limited number of dimensions (e.g. 3 to 4) 

all of which share a set of dimensions

visual space (~all neurons have receptive fields)

ordinal dimension



Binding through space

space-feature fields

different features

all sharing visual space 

Visual search and working memory: theory and experiment 15
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Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

[Grieben et al. Attention, Perception & Psychophysics 2020]



Binding through space

bi-directional coupling 
along spatial dimensions

[Grieben et al. Attention, Perception & Psychophysics 2020]

Atten Percept Psychophys

Fig. 8 The fields involved in the exploration and memorization sub-task are highlighted within the complete neural dynamic architecture

while in visual working memory and beyond item location
is represented independently of gaze. The coordinate
transform that achieves this invariance is prohibitively
costly if performed directly on the bound visual objects
(Schneegans et al., 2016). Instead, the transformation is
only performed for the spatial dimension of the fields, and
the feature information is added back in as modeled here.
For this paper, however, we omit coordinate transforms by
assuming that all representations share the original retinal
frame (i.e., that of the fixed camera), which is equivalent to
assuming the absence of eye or head movements.

The memory space/feature maps provide three-
dimensional input to an analogous set of three memory
space/feature selection fields (G). In these fields, one item
from the input is selected and brought above threshold,
again based on overlap with column input from the scene
spatial selection field. The result is an isolated representa-
tion of the memory item at the attended location. Projections
from both this representation and the scene space/feature
selection fields converge onto a neural feature matching
mechanism (H , see “Match and mismatch detection”),
which detects whether the attended item’s features have
been successfully committed to scene working memory.
When this detection occurs, the task node is deactivated
through an inhibitory connection (red line in Fig. 8). This
concludes one step in the exploration sequence. By default,
that is, unless another task becomes active (see below),
the task node is then reactivated, thus initiating another

cycle of attentional selection and commitment to working
memory.

Task 2: Retaining feature cues

Figure 9 highlights the sub-network that is responsible for
retaining a feature cue for visual search. It is activated by
the “retain” task node, which may itself be activated from
different sources depending on the cognitive task at hand. In
the current context, the task node is activated by the onset
detector (D3 in Fig. 9) when it detects a change in the visual
scene.

Analogously to exploration, the retain process consists
of storing currently attended feature values in self-sustained
fields, the search cue fields (I ), which are one-dimensional
since only the feature values of the cue are relevant (not its
position).

To forward feature values from the scene space/feature
selection fields to the search cue fields, the retain node
homogeneously boosts activation in the retain gate fields
(I1), enabling them to build peaks and thus pass on
activation.

The retain sub-task is terminated once the content of
the search-cue fields matches the features of the currently
attended item. Upon deactivation of the retain node, peaks
in the attention field and the gating fields decay, whereas in
the search cue fields the cue’s feature values are retained for
later use.



FIGURE 5.11: Multi-item trial in the multifeature model with high spatial proximity and different possible outcomes. (a) 
At the start of each trial, a cue item is presented (not shown) and the color memory field is boosted concurrently. This 
causes a peak to build there, which is retained throughout the trial and ref lects the target color. The projection to the color 
attention field activates the respective value there, which in turn biases activation in the space-color field. (b) Next, the 
test display with multiple items is presented. Each of the items is represented by one peak in each visual sensory field. The 
activation ridge from the color attention field enhances the space-color peak of the target item (the green S), causing this 
peak to determine peak position in the spatial attention field. The spatial attention peak projects back into both visual 
sensory fields, enhancing the space-shape peak at that location (and less so the peaks of close-by items). (c) Brief boosts to 
the shape memory field and the spatial read-out field force these fields to form peaks, which correspond to the shape and 
spatial response of the model, respectively. In most cases, the correct shape and location are chosen, as shown here. (d) 
In some cases, the feature-space peak of a distractor item spatially close to the target item (here, the space-shape peak of 
the yellow O) is overly enhanced by the ridge from the spatial attention field. In this case, the erroneously enhanced peak 
may prevail in determining peak position in the shape attention field and, thus, the shape response, resulting in an illusory 
conjunction. Illusory conjunctions are also associated with a shift of peak position in the spatial attention field, which is 
why the location response is as well displaced toward the spatial midpoint between the involved items.

FIGURE 5.11: Multi-item trial in the multifeature model with high spatial proximity and different possible outcomes. (a) 
At the start of each trial, a cue item is presented (not shown) and the color memory field is boosted concurrently. This 
causes a peak to build there, which is retained throughout the trial and ref lects the target color. The projection to the color 
attention field activates the respective value there, which in turn biases activation in the space-color field. (b) Next, the 
test display with multiple items is presented. Each of the items is represented by one peak in each visual sensory field. The 
activation ridge from the color attention field enhances the space-color peak of the target item (the green S), causing this 
peak to determine peak position in the spatial attention field. The spatial attention peak projects back into both visual 
sensory fields, enhancing the space-shape peak at that location (and less so the peaks of close-by items). (c) Brief boosts to 
the shape memory field and the spatial read-out field force these fields to form peaks, which correspond to the shape and 
spatial response of the model, respectively. In most cases, the correct shape and location are chosen, as shown here. (d) 
In some cases, the feature-space peak of a distractor item spatially close to the target item (here, the space-shape peak of 
the yellow O) is overly enhanced by the ridge from the spatial attention field. In this case, the erroneously enhanced peak 
may prevail in determining peak position in the shape attention field and, thus, the shape response, resulting in an illusory 
conjunction. Illusory conjunctions are also associated with a shift of peak position in the spatial attention field, which is 
why the location response is as well displaced toward the spatial midpoint between the involved items.

cue “green”

answer “s”

[Schneegans et al.,Ch 5 of DFT Primer, 2016]

Binding through space



attend to this itemshared space

[Schneegans et al.,Ch 8 of DFT Primer, 2016]



[Schneegans et al.,Ch 5 of DFT Primer, 2016]



bound 
through 
space

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Binding through space => 
sequential bottleneck

binding through space must occur one time at a 
time..… to avoid binding problem 

=> the sequential processing bottleneck may 
originate from this

(more on this in a moment: coordinate 
transforms)



Binding through ordinal position

feature dimensions presented at the same time 
(in a sequence) are bound in working memory

This account of feature binding contrasts with conceptualizations
of working memory that are based on bound object representations.
For instance, the influential object file theory (Kahneman et al.,
1992; Treisman & Zhang, 2006) considers feature maps to be the
basis of sensory representations and assumes that location takes an
important role in forming bound representations through attentional
selection of single objects. But once the features of an item are
combined into an object file, location is no longer required for
maintaining the binding of other visual features (illustrated in
Figure 1c). Similarly, slot models of working memory (Luck &
Vogel, 1997) assume that bound object representations comprising
all features of a visual stimulus are the natural units of working
memory, without any special role for location.
An important limitation of the spatial binding account is that it

cannot readily explain how we can memorize the feature combina-
tions of multiple objects that are presented sequentially at the same
location. While there is evidence that memory performance is
impaired when stimuli are presented sequentially (Allen et al.,
2006; Gorgoraptis et al., 2011), multiple items shown at the same
location can still be memorized separately, and ordinal position can
be used as an effective cue to select one item (e.g., Harrison & Tong,
2009). One previous study reported that feature binding is selec-
tively impaired when sample stimuli are presented sequentially at the
same location rather than at different locations, even if location is not
task relevant (Pertzov & Husain, 2014). However, a recent replica-
tion study found that this effect did not generalize when longer inter-
stimulus intervals or different feature combinations were used and
attributed it to perceptual interference (Schneegans et al., 2021).
Thus, a shared location of multiple sample items does not appear to
create specific disruptions of binding memory.
A possible explanation that reconciles this finding with a spatial

binding account is that stimuli presented sequentially at the same
location are internally remapped to different locations, such that
binding via space becomes feasible again (Abrahamse et al., 2014;
van Dijck et al., 2013). In this account, an ordinal position may also
be associated with each location, possibly in the form of another
feature map over visual space, to allow an item’s ordinal position to
be recalled or used as retrieval cue for other features.

An alternative explanation is that the time at which different
stimuli are perceived, or their temporal order, can take a similar role
as space in binding visual features. Some parallels between the roles
time and space have been observed for feature binding in visual
perception.When participants briefly view an array of colored letters
with a simultaneously presented location cue, report errors for the
color and identity of the cued item are largely independent (which
matches the observation in working memory described above); the
same independent report errors are found when participants view a
rapid stream of colored letters at a single location and a temporal cue
in the form of briefly flashed ring is used (Vul & Rich, 2010). In
visual working memory, it has been observed that participants can
encode color–shape conjunction when the features are presented
either spatially or temporally separated, with only modest reduction
in performance compared to unified sample stimuli, and no reliance
on central attentional resources (Karlsen et al., 2010).

Memory for the temporal order of stimuli has been studied in
great detail in the domain of verbal working memory (Marshuetz,
2005). Patterns of recall errors identified in this field, such as
gradients in the frequency of transpositions (the equivalent of swap
errors) with temporal distance, have also been shown to generalize
to sequential recall in visuo-spatial memory (Guérard & Tremblay,
2008; see Hurlstone et al., 2014, for a comprehensive review of
this field). Performance is similar in recall of sequences of locations
(Corsi block-tapping task) and matched sequences of simple verbal
memory items, such as digits (Monaco et al., 2013). However,
sequential order does not appear to take the same central role in
retrieval from visuo-spatial memory as it does for verbal memory
(Gmeindl et al., 2011). Nonetheless, recall performance in report-
ing the sequential order of visual stimuli is similar to performance
for reporting the objects’ locations (Delogu et al., 2012), and both
sequential order and location are encoded in working memory
automatically even when not task relevant (Heuer & Rolfs, 2021).

An explicit role of temporal order in binding features in visual
working memory has first been proposed in the context of rapid serial
visual presentation tasks, namely to explain specific misbinding errors
related to the attentional blink effect. Wyble, Bowman and colleagues
proposed a model in which representations of feature conjunctions are

Figure 1
Conceptual Models of Feature Binding

(b) (c) (d)(a)

Note. (a) Example stimulus displays with color-orientation conjunctions, either presented simultaneously at different locations (top) or sequentially at
the same location (bottom). (b) Spatial binding model with separate feature maps over visual space. Different features of an object are bound to each other
only indirectly via their shared location. Each item’s ordinal position or presentation time may also be encoded in an additional feature map. (c) Object-
basedmodel. The visual features of an object are bound directly to each other, and the whole object can be bound to a location (as shown for the red object)
and/or a point in time (blue object). (d) Temporal binding model. Object features, and potentially also object locations, are bound independently to a point
in time or an ordinal position. See the online article for the color version of this figure.

2 SCHNEEGANS, MCMASTER, AND BAYS

[Schneegans, McMaster, Bays: Psych Rev 2022]



Binding through ordinal position

ordinal position can be generated 
autonomously in DFT
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using an ordinal position “index” 
to binds different concepts 
together

object/object concept target/relationship relationship/relation concept reference/relationship

patient/actionaction/action conceptagent/actionobject/property concept

[Sabinasz, Richter, Schöner, Cog. Neurodyn. 2023]

“red ball”

Binding through ordinal position



[Sabinasz, Richter, Schöner Cog Neurodyn 2023]

(ordinal) object index

separates two 
instantiations of “tree”

solving the  
problem of two

Neural representation of 
conceptual structure 



[Sabinasz, Richter, Schöner Cog Neurodyn 2023]

(ordinal) relation index

enables multiple 
instances of same 
relation in a nested 
phrase

Neural representation of 
conceptual structure 



[Sabinasz, Richter, Schöner Cog Neurodyn 2023]

binding arguments in 
particular roles to 
relations 

through the index 
dimensions

target reference

Neural representation of 
conceptual structure 



Background: different notions of binding

Joint representations and coupling patterns 

Binding through space/ordinal dimension

Coordinate transforms

Roadmap Foundations 2: Space-time coupling



Coordinate transforms

are fundamental element to sensory-motor cognition

[but critical also to mental operations! ]

example: reaching 
is guided by 
body-centered,  
not by retinal 
visual 
representation



Coordinate transforms

are fundamental element to sensory-motor cognition

[but critical also to mental operations! ]

example: reaching 
is guided by 
body-centered,  
not by retinal 
visual 
representation

Eye Movements and Reference Frames

visual image visual image

visual scene visual scene

eye with 
ocular muscles

limited visual acuity in periphery of the retina, eye movements to
perceive larger scenes, read, etc.

gaze direction depends on eye and head orientation, considered as
single variable in the following

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 23 / 37

retinal 
frame

body 
frame

gaze shift



[Schneegans Ch 7, DFT Primer, 2016]

Coordinate transforms

can be achieved in DFT by 

binding the “to-be-transformed space” and the 
“transforming” dimension into a joint representation

and the unbinding into the “transformed space”



Reference Frame Transformation

solution:

expand into combined, higher-dimensional field

then can implement arbitrary (smooth) mappings from this field to
target representation

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 27 / 37

steer: gaze angle retinal space

body space

[Schneegans Ch 7, DFT Primer, 2016]

Coordinate transforms

bind neural 
representations of 

retinal space

gaze angle 

into a joint 
representation 

(gain field ~Andersen/Pouget

then contract to body 
space



DNF Mechanism for Reference Frame Transformation
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[Schneegans Ch 7 of DFT Primer, 2016]

Coordinate transform



DNF Mechanism for Reference Frame Transformation
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Coordinate transform



DNF Mechanism for Reference Frame Transformation
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Coordinate transform



DNF Mechanism for Reference Frame Transformation

−60° −40° −20° 0° 20° 40° 60°

−60°

−40°

0°

20°

40°

60°

0

10

−10

010 −10
activation

ac
tiv

at
io

n

ga
ze

 d
ire

ct
io

n

retinal position

retinal field

ga
ze

 fi
el

d transformation field

gaze
direction

stimulus
(retinal)

stimulus
(body-

centered)

−20° 30° 10°

visual stimulus

gaze

A B

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 31 / 37

[Schneegans Ch 7 of DFT Primer, 2016]

Coordinate transform



DNF Mechanism for Reference Frame Transformation
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[Schneegans Ch 7 of 
DFT Primer, 2016]

Coordinate transform



Retina => body space

bi-directional 
coupling

=> predict 
retinal 
coordinates

Multi-Directional Transformations
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[Schneegans, Schöner Biological Cybernetics 2012]

Spatial remapping 
during saccades



Accounts for predictive updatingCase Study: Spatial Remapping during Saccades
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[model: Schneegans, Schöner Biological Cybernetics 2012]

[neural data: Duhamel, Colby, Goldberg, 1992, LIP]



Coordinate transforms for cognition

to perceptually ground 
relations/actions etc

use relational concepts 
that have patterned 
coupling 

targetreference

“green to the right of red’’

3.3 Spatial transformations

(a) camera input

(b) spatial relation CoS field

(c) spatial relation CoD field

F .: Activation of the (b) spatial rela-
tion CoS field and the (c) spatial relation CoD
field. Both fields receive input representing
the relative spatial position of two objects, visi-
ble as bumps of activation to the left and right
of the center of the plots. Only the object on
the left overlaps with the spatial template 
   in the spatial relation CoS field.
If this objects was not in the scene, the bump
on the right would form a peak in the spatial
relation CoD field.

dimensions x and y.
Both fields match the input against spatial templates that repre-

sent relational concepts such as  or     (Fig-
ure 3.9). If the spatial relation CoS field forms a peak during such
a match, the model converged on a combination of target and ref-
erence object that fits a given or existing relation. e field is se-
lective and thus only allows for a single object to match any of the
relational templates. If the spatial relation CoD field forms a peak,
on the other hand, the current combination of target object and ref-
erence object candidates does not fit the relation. is triggers that
the process of matching objects against spatial relations is repeated
with a new target object. is mechanism is part of the process
organization system and will be explained in Section 3.5.

e spatial relation CoS field with activation uScs follows the
differential equation
τ Scsu̇Scs(x, y, t) =− uScs(x, y, t) + hScs + wξ · ξScs(x, y, t)

+ [kScs,Scs ∗ g(uScs)](x, y, t)

+

∫∫
dφ′dr′ ARD(φ′, r′, t)

BRD(φ− φ′, r − r′, t)

+
∑

i=1,...,NR

WRi(x, y) · g(uSPi(t))

+ wScs,SRI g(uSRI(t))
− wScs,SR g(uSR(t)),

(3.28)

where the third and fourth line formalize the steerable neural map-
ping, which is implemented as a convolution between

ARD(φ, r, t) = [kRC ∗ g(uRC)](x, y, t), (3.29)
the output of the relational candidates field (uRC), convolved with
a Gaussian kernel (kRC) and converted to polar coordinates and

BRD(φ, r, t) = [kROT ∗ g(uROT)](φ, r, t), (3.30)
the output of the rotation field (uROT), convolved with a Gaussian
kernel (kROT); this field will be explained later in this section. e
fifth line of Equation 3.28 formalizes input from an array of neu-
ral nodes, u⃗SP, that represent discrete relational concepts like 
   or . e meaning of the concepts is encoded
in the connection weights W⃗R(x, y). Please note that dim(W⃗R) =
dim(u⃗SP) = NR. is will be explored in more detail in Section 3.4.
e sixth line is input from the intention node of the ‘spatial rela-
tional field process’, which is part of the process organization system

59

[Sabinasz, Richter, Schöner: 
Cog Neurodyn 2023]



Role-filler binding
roles: reference, target, 
agent, tool, …

“green to the right of red’’

[Sabinasz, Richter, Schöner: Cog Neurodyn 2023]

joint representation of 
roles and concepts

target

reference

blue

green

red

red

greenred
color

feature 
field

green

color concepts… 
grounded in 
feature fields

target reference



referencetarget

spatial relation match

ABOVE

BELOW

LEFT

RIGHT

target reference

“green to the right of red’’

3.3 Spatial transformations

(a) camera input

(b) spatial relation CoS field

(c) spatial relation CoD field

F .: Activation of the (b) spatial rela-
tion CoS field and the (c) spatial relation CoD
field. Both fields receive input representing
the relative spatial position of two objects, visi-
ble as bumps of activation to the left and right
of the center of the plots. Only the object on
the left overlaps with the spatial template 
   in the spatial relation CoS field.
If this objects was not in the scene, the bump
on the right would form a peak in the spatial
relation CoD field.

dimensions x and y.
Both fields match the input against spatial templates that repre-

sent relational concepts such as  or     (Fig-
ure 3.9). If the spatial relation CoS field forms a peak during such
a match, the model converged on a combination of target and ref-
erence object that fits a given or existing relation. e field is se-
lective and thus only allows for a single object to match any of the
relational templates. If the spatial relation CoD field forms a peak,
on the other hand, the current combination of target object and ref-
erence object candidates does not fit the relation. is triggers that
the process of matching objects against spatial relations is repeated
with a new target object. is mechanism is part of the process
organization system and will be explained in Section 3.5.

e spatial relation CoS field with activation uScs follows the
differential equation
τ Scsu̇Scs(x, y, t) =− uScs(x, y, t) + hScs + wξ · ξScs(x, y, t)

+ [kScs,Scs ∗ g(uScs)](x, y, t)

+

∫∫
dφ′dr′ ARD(φ′, r′, t)

BRD(φ− φ′, r − r′, t)

+
∑

i=1,...,NR

WRi(x, y) · g(uSPi(t))

+ wScs,SRI g(uSRI(t))
− wScs,SR g(uSR(t)),

(3.28)

where the third and fourth line formalize the steerable neural map-
ping, which is implemented as a convolution between

ARD(φ, r, t) = [kRC ∗ g(uRC)](x, y, t), (3.29)
the output of the relational candidates field (uRC), convolved with
a Gaussian kernel (kRC) and converted to polar coordinates and

BRD(φ, r, t) = [kROT ∗ g(uROT)](φ, r, t), (3.30)
the output of the rotation field (uROT), convolved with a Gaussian
kernel (kROT); this field will be explained later in this section. e
fifth line of Equation 3.28 formalizes input from an array of neu-
ral nodes, u⃗SP, that represent discrete relational concepts like 
   or . e meaning of the concepts is encoded
in the connection weights W⃗R(x, y). Please note that dim(W⃗R) =
dim(u⃗SP) = NR. is will be explored in more detail in Section 3.4.
e sixth line is input from the intention node of the ‘spatial rela-
tional field process’, which is part of the process organization system
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coordinate frame 
centered on the 
reference object

Coordinate transforms for cognition

a single pattern 
of connectivity 
may invariantly 
apply to any 
reference 
objects



=>critical role of coordinate transforms for 
higher cognition

as the direction of gaze relative to the body (Schneegans & Schöner, 2012). Such
mappings may be neurally implemented in what is known as gain fields (Pouget &
Sejnowski, 1997), essentially joint representations of the original and the steering di-
mension (Figure 5). Peaks in the gain field form where input from the two sources
overlaps. Any function of the two inputs to the gain field can then be computed by
projecting out from the gain field to a transformed field using an appropriate pattern
of connectivity. In the Figure, summing along the diagonal achieves the transformation
to the desired coordinate frame.

tar
get

relational

transformation

reference

Figure 5: Steerable neural mapping to transform target objects into a coordinate
frame centered on a reference object. The target field (upper left) contains peaks at the
locations of two target objects (light blue). The reference field (upper right) contains a
peak at the location of a reference object (green). The transformation (or gain) field is
a joint representation of these two dimension. Either field provides sub-threshold ridge
input to the transformation field. Peaks form where these ridges overlap. Projection
from the transformation field along the diagonal creates a representation of the target
objects centered on the location of the reference object (relational field).

3 Grounding nested phrases

The representation and perceptual grounding of nested relational phrases, considered
by some the backbone of grounded cognition (Barsalou, 2008), is used in an exemplary
case study to show how DFT may approach the cognitive competences idealized in
the notions of productivity, compositionality, and systematicity. Building on earlier

10

[Sabinasz, Richter, 
Schöner: Cog 

Neurodyn 2023]



Coordinate transforms
and binding through space

to coordinate transform feature 
fields… 

do we need a joint 
representation of each space-
feature field with the 
transforming dimension? 

[Schneegans, Schöner, 2012]

coordinate 
transform space 
only!

transport the 
feature values by 
binding through 
space! 

No!



Coordinate transforms 
and binding through space

Case Study: Spatial Remapping during Saccades
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[Schneegans, Schöner, 2012]

coordinate 
transform space 
only!

transport the 
feature values by 
binding through 
space! 



Coordinate transforms 
and binding through space

[Schneegans, Schöner, 2012]

=> binding through space (and the attentional 
bottleneck this implies) radically simplifies 
coordinate transforms

parietal cortex (where gain fields are) may do 
coordinate transforms for every feature/category 
representation! 



attend to this itemshared space

[Schneegans et al.,Ch 8 of DFT Primer, 2016]

binding 
through 
space



[Schneegans et al.,Ch 5 of DFT Primer, 2016]

binding 
through 
space



bound 
through 
space

[Schneegans et al.,Ch 5 of DFT Primer, 2016]

binding 
through 
space



allocentric space

[Schneegans et al.,Ch 8 of DFT Primer, 2016]

retinal space

coordinate
transform

that space 
contains the 
coordinate 
transform!



Background: different notions of binding

Joint representations and coupling patterns 

Binding through space/ordinal dimension

Coordinate transforms

Roadmap Foundations 2: Space-time coupling



Is there a binding problem for DNN?

… old debate Poggio.von der Malsburg.. [Neuron 99] 

complex learned features are represented jointly 
distributed across a DNN…. hidden layers

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.

Red Green Blue

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)
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Is there a binding problem for DNN?

=> need the relevant patterns of connectivity 
across the visual array (done by weight sharing)

e.g. Fei-Fei Li et al for relations… 

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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binding by joint representation is not flexible!

[Poggio, 1999]

Review: Riesenhuber and Poggio
89

Figure 1. Poggio and Edelman (1990) Model
of 3D Rotation-Invariant O bject Recognition
from Individual Views
(a) C artoon of the model. The gray ovals cor-
respond to view-tuned units that feed into a
view-invariant unit (white circle).
(b) Tuning curves of the view-tuned (gray) and
the view-invariant (black) units.

by the strongest afferent, and it thus performs a “selec- (C1) each pool S1 cells of the same orientation over a
range of scales and positions using the MAX operation.tion” (and possibly scanning) operation over afferents

tuned to different positions and scales (for a computa- Filters were grouped in four bands, each spanning
roughly 0.5 octaves; sampling over position was donetional justification, see Riesenhuber and Poggio, 1999b).

The idea is similar to the original Hubel and Wiesel model over patches of linear dimensions of 4, 6, 9, and 12
pixels, respectively (starting with the smallest filterof a complex cell receiving input from simple cells at

different locations to achieve phase invariance. band); patches overlapped by half in each direction to
obtain more invariant cells responding to the same fea-In our model of object recognition in cortex (Figure

2), the two types of operations, selection and template tures as the S1 cells. Different C1 cells were then com-
bined in higher layers—the figure illustrates two possibil-matching, are combined in a hierarchical fashion to build

up complex, invariant feature detectors from small, lo- ities: either combining C1 cells tuned to different
features, resulting in S2 cells that respond to coacti-calized, simple cell–like receptive fields in the bottom

layer. Our model “retina” is composed of 160 3 160 vations of C1 cells that are tuned to different orientations,
or yielding C2 cells that respond to the same feature aspixels, corresponding to a 58 receptive field size if we

set 32 pixels 5 18 (Kobatake and Tanaka [1994] report the C1 cells but that have bigger receptive fields (i.e.,
the hierarchy does not have to be a strict alternation ofan average V4 receptive field size of 4.48). Patterns on the

model retina are first filtered through layer S1 (adopting S and C layers). In the version described in this paper,
there were no direct C1 to C2 connections, and eachFukushima’s [1980] nomenclature referring to feature-

building cells as “S” cells and pooling cells as “ C ” cells) S2 cell received input from four neighboring C1 units (in
a 2 3 2 arrangement) of arbitrary orientation, yielding aof simple cell–like receptive fields (first derivative of

G aussians, zero-sum, square-normalized to 1, oriented total of 44 5 256 different S2 cell types. S2 transfer
functions were G aussian (s 5 1, centered at 1). C2 cellsat 08, 458, 908, and 1358 with standard deviations of

1.75–7.25 pixels in steps of 0.5 pixels). S1 filter re- then pooled inputs from all S2 cells of the same type,
producing invariant feature detectors tuned to complexsponses are absolute values of the image “filtered”

through the units’ receptive fields (more precisely, the shapes. Top-level view-tuned units had G aussian re-
sponse functions and each VTU received inputs from arectified dot product of the cell’s receptive field with

the corresponding image patch). Receptive field centers subset of C2 cells (see below).
This model had originally been developed to accountdensely sample the input retina. C ells in the next layer

Figure 2. Diagram of Our Hierarchical Model
of O bject Recognition in C ortex
The model consists of layers of linear units
that perform a template match over their af-
ferents (blue arrows) and of nonlinear units
that perform a MAX operation over their in-
puts, where the output is determined by the
strongest afferent (green arrows). While the
former operation serves to increase feature
complexity, the latter increases invariance by
effectively scanning over afferents tuned to
the same feature but at different positions
(to increase translation invariance) or scale
(to increase scale invariance; not shown). In
the version described in this paper, learning
only occured at the connections from the C2
units to the top-level view-tuned units. From
Riesenhuber and Poggio (1999b).
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