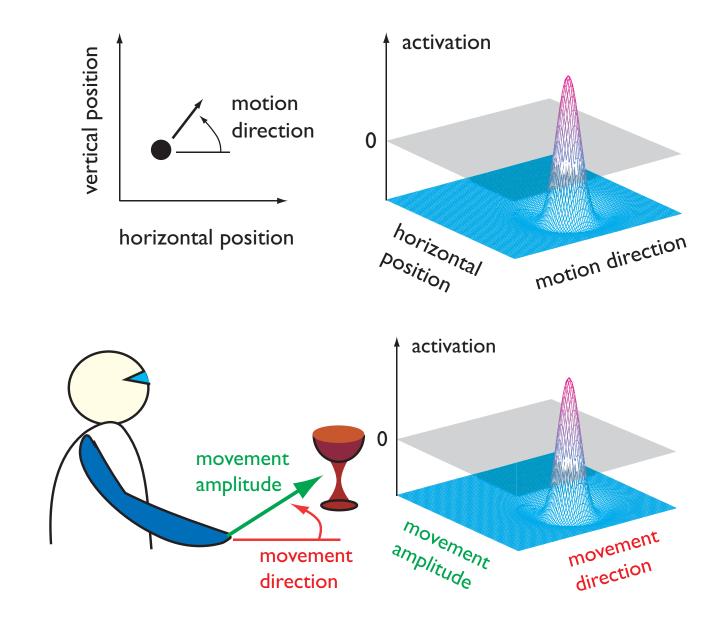
DFT coupling among higher-dimensional fields

Gregor Schöner Institute for Neural Computation (INI) <u>dynamicfieldtheory.org</u>

Roadmap Foundations 2: Space-time coupling

Background: different notions of binding
Joint representations and coupling patterns
Binding through space/ordinal dimension
Coordinate transforms

Joint representations of different feature dimensions



Joint representations don't scale

=>

- 2 spatial dimensions
- depth
- orientation
- 📕 color
- **texture**
- movement direction
- size

- e.g. 8 dimensions
- 100 neurons per dimension
 - $= 10^{2*8} = 10^{16}!$
 - more than there are in the entire brain!
 - > only small sets of feature dimensions can be represented jointly

Joint representations are not flexible

- needs dedicated substrate for every possible combination
- does not account for mis-bindings

Binding through shared dimensions

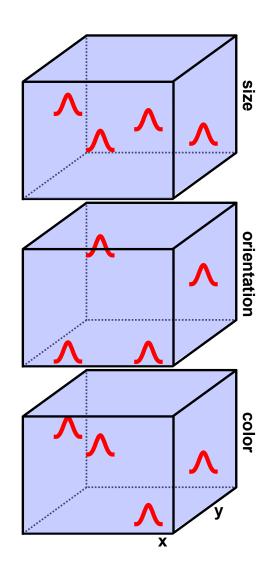
- separate fields for joint representations of limited number of dimensions (e.g. 3 to 4)
- all of which share a set of dimensions
 - visual space (~all neurons have receptive fields)
 - ordinal dimension

Binding through space

space-feature fields

different features

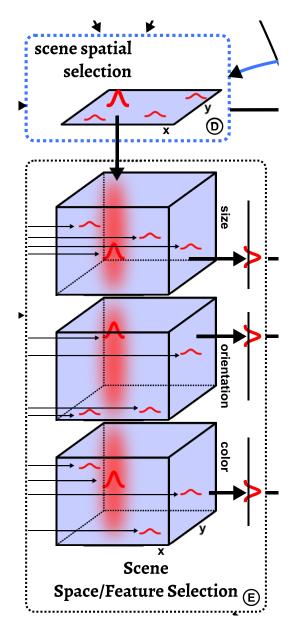
all sharing visual space



[Grieben et al. Attention, Perception & Psychophysics 2020]

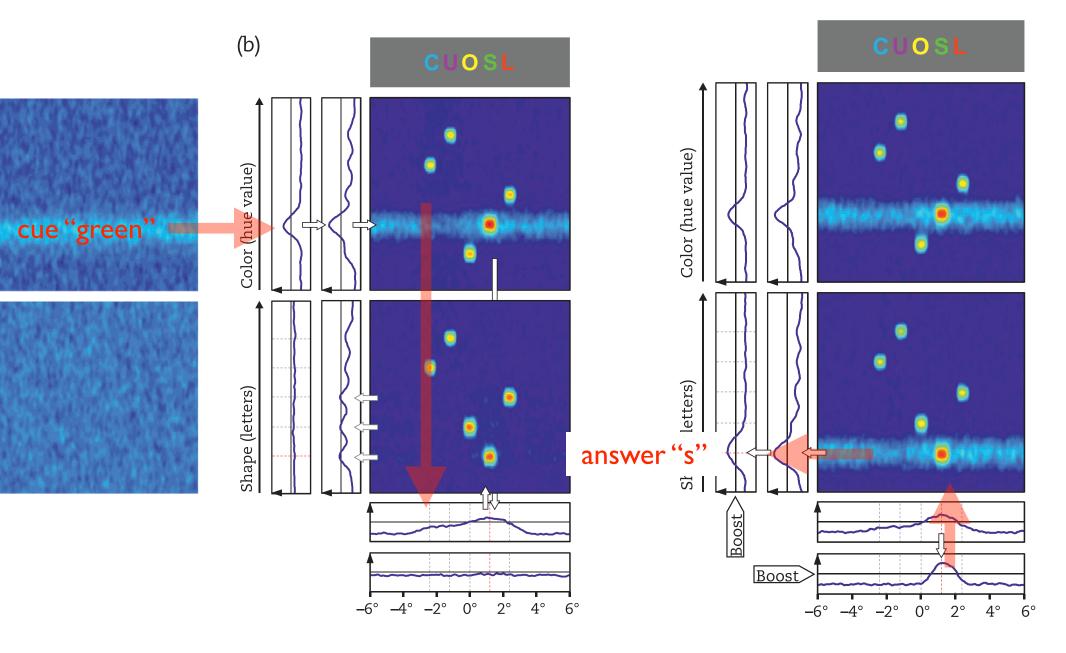
Binding through space

bi-directional coupling along spatial dimensions

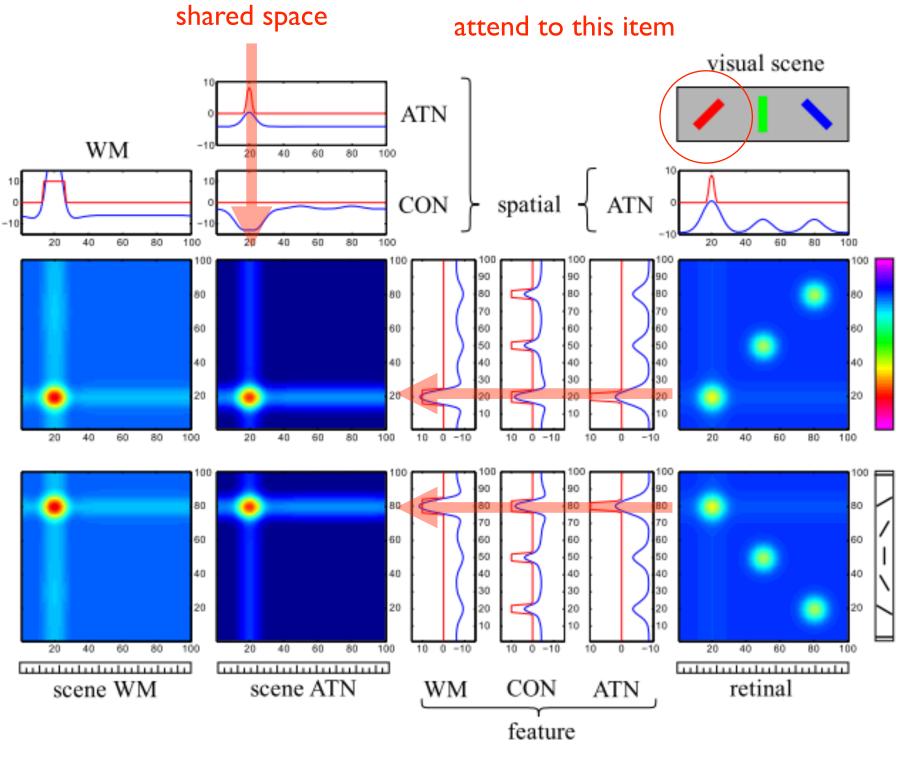


[Grieben et al. Attention, Perception & Psychophysics 2020]

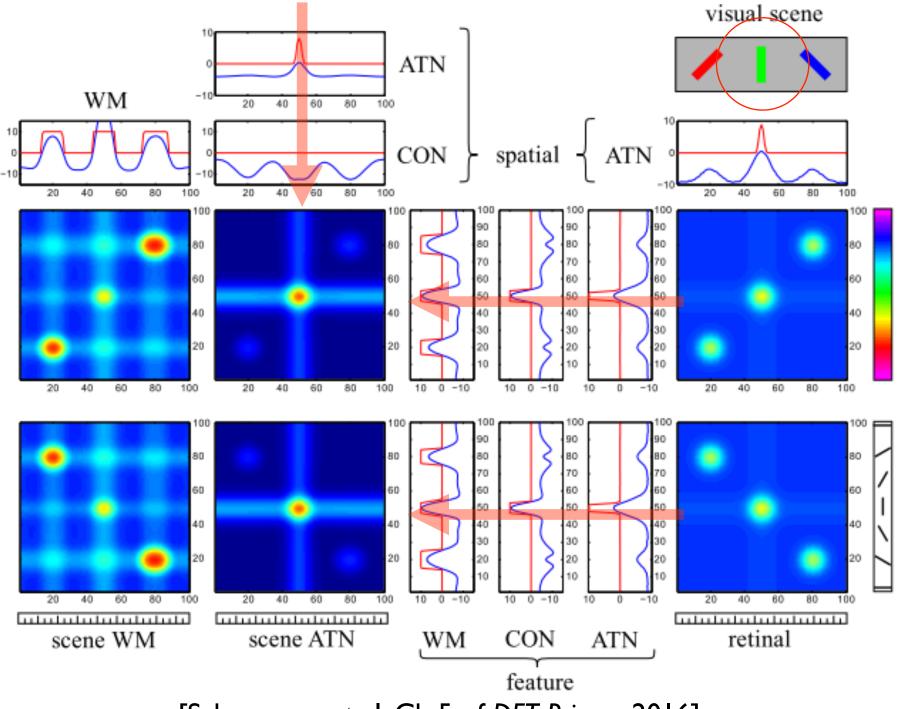
Binding through space



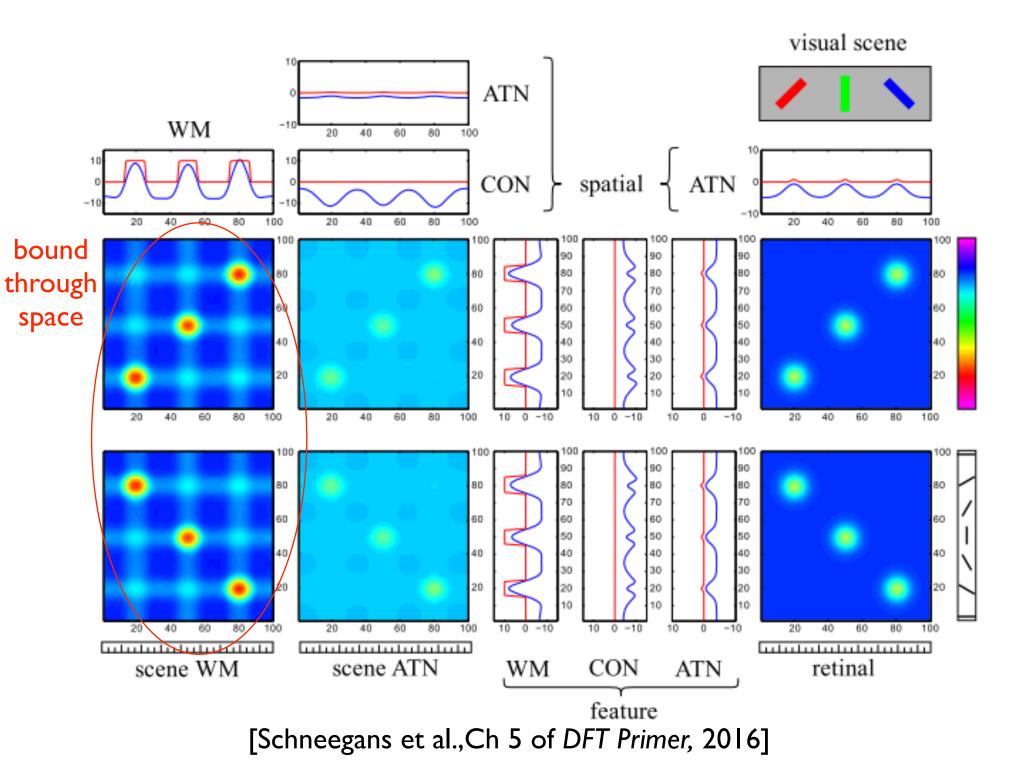
[Schneegans et al., Ch 5 of DFT Primer, 2016]



[Schneegans et al., Ch 8 of DFT Primer, 2016]



[Schneegans et al., Ch 5 of DFT Primer, 2016]

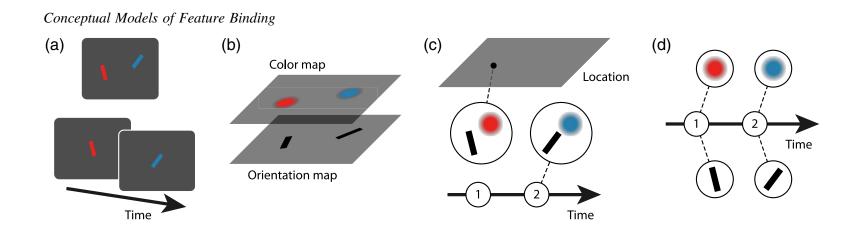


Binding through space => sequential bottleneck

- binding through space must occur one time at a time..... to avoid binding problem
- => the sequential processing bottleneck may originate from this
- (more on this in a moment: coordinate transforms)

Binding through ordinal position

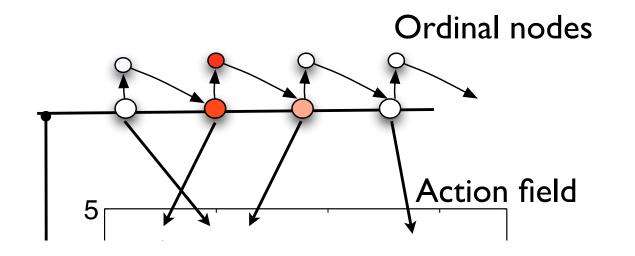
feature dimensions presented at the same time (in a sequence) are bound in working memory



[Schneegans, McMaster, Bays: Psych Rev 2022]

Binding through ordinal position

ordinal position can be generated autonomously in DFT



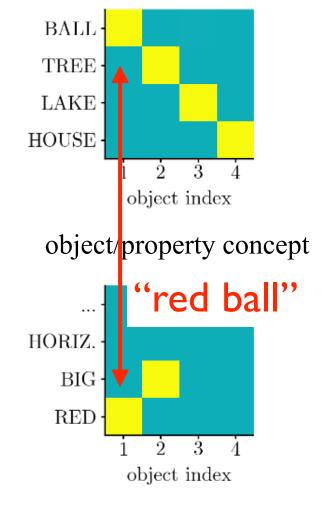
posit

[Sandamirskaya, Schöner, Neural Networks, 2010]

Binding through ordinal position

object/object concept

using an ordinal position "index" to binds different concepts together



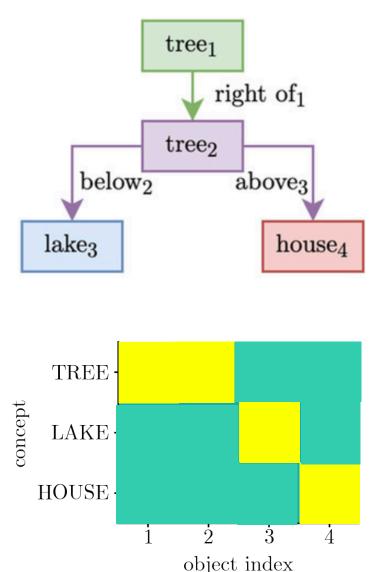
[Sabinasz, Richter, Schöner, Cog. Neurodyn. 2023]

Neural representation of conceptual structure

(ordinal) object index

separates two instantiations of "tree"

solving the problem of two

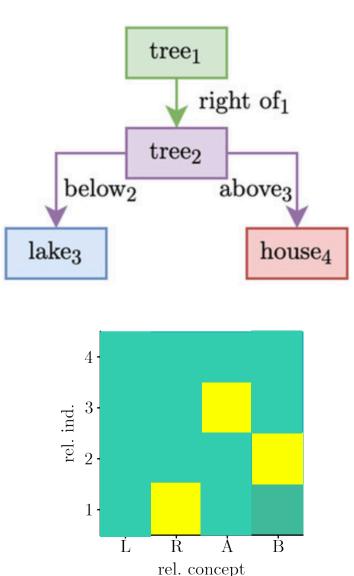


[Sabinasz, Richter, Schöner Cog Neurodyn 2023]

Neural representation of conceptual structure

(ordinal) relation index

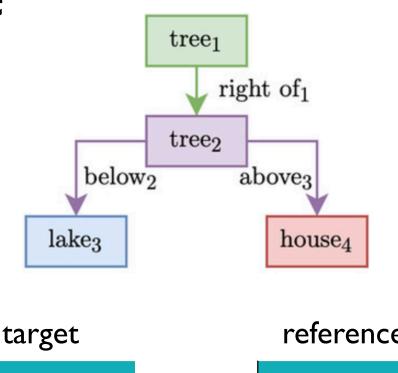
enables multiple instances of same relation in a nested phrase

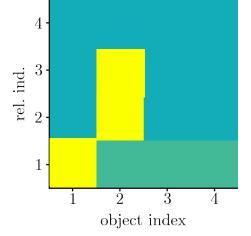


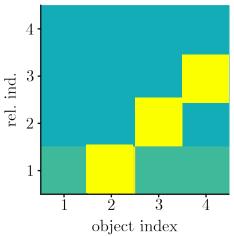
[Sabinasz, Richter, Schöner Cog Neurodyn 2023]

Neural representation of conceptual structure

- binding arguments in particular roles to relations
- through the index dimensions







[Sabinasz, Richter, Schöner Cog Neurodyn 2023]

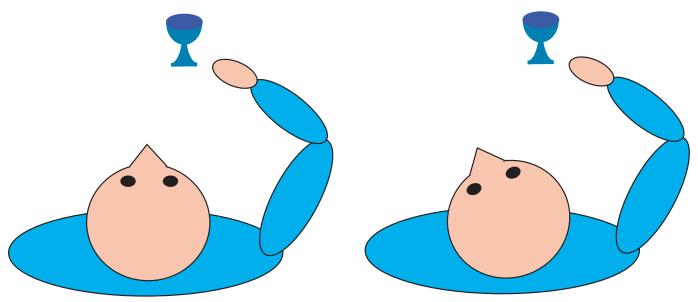
Roadmap Foundations 2: Space-time coupling

Background: different notions of binding
Joint representations and coupling patterns
Binding through space/ordinal dimension
Coordinate transforms

are fundamental element to sensory-motor cognition

[but critical also to mental operations!]

example: reaching is guided by body-centered, not by retinal visual representation



are fundamental element to sensory-motor cognition

[but critical also to mental operations!]

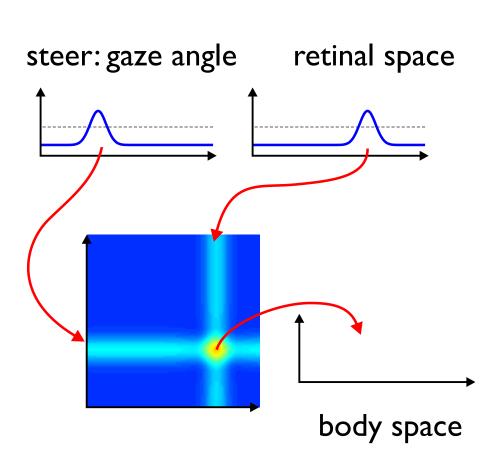
visual scene visual scene body example: reaching frame is guided by body-centered, gaze shift eye with ocular muscles not by retinal visual retinal representation frame visual image visual image

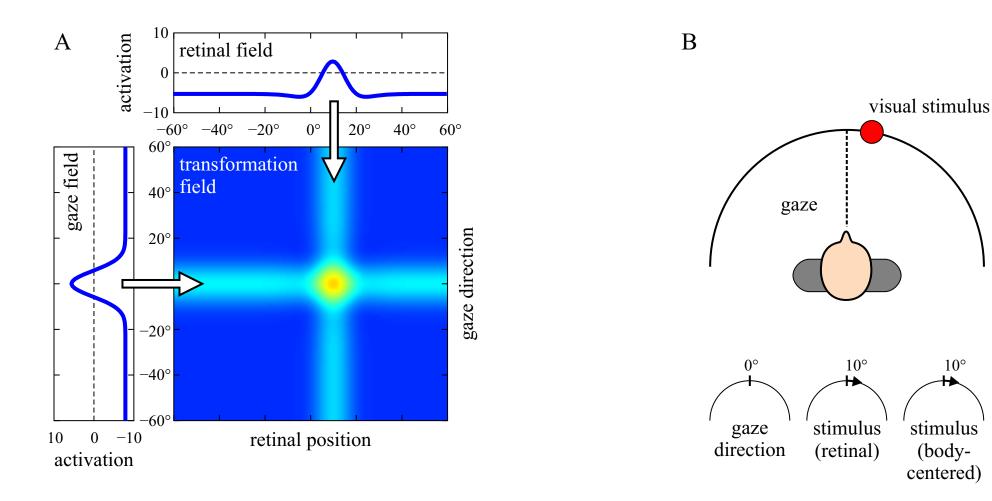
can be achieved in DFT by

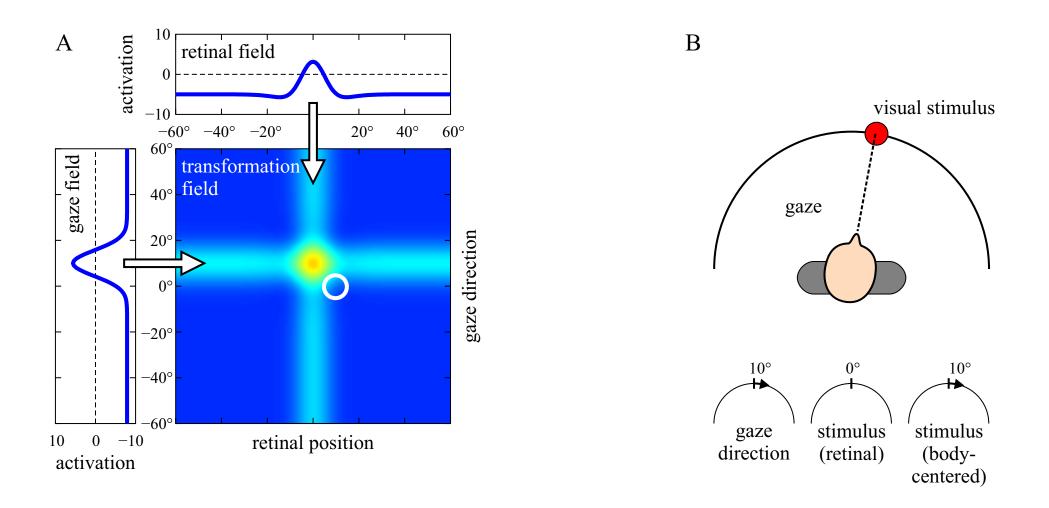
binding the "to-be-transformed space" and the "transforming" dimension into a joint representation

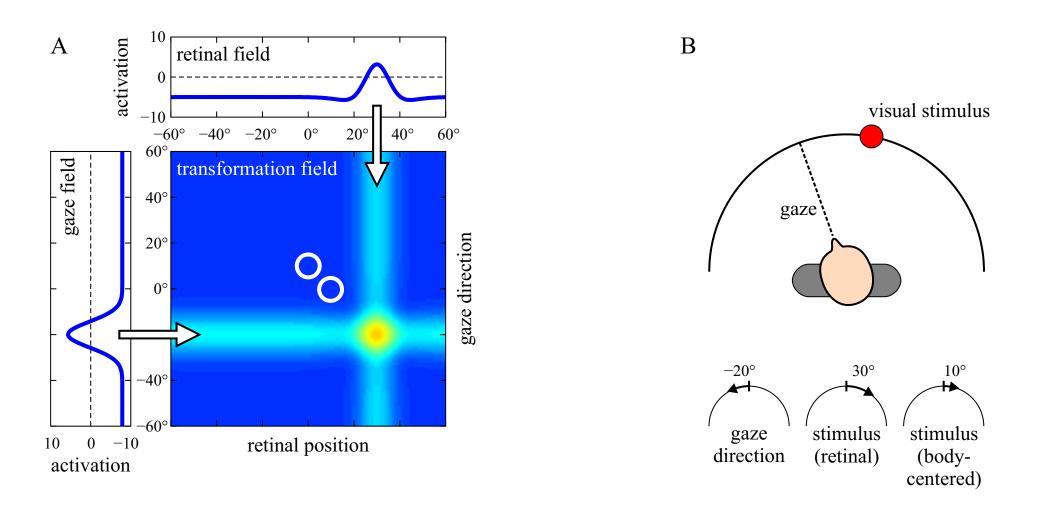
and the unbinding into the "transformed space"

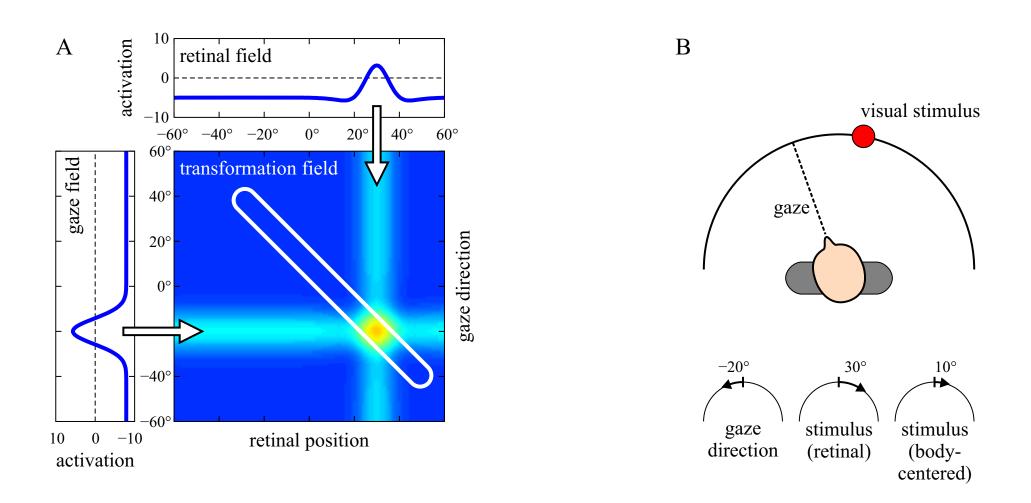
- bind neural representations of
 - retinal space
 - 📕 gaze angle
- into a joint representation
 - 📕 (gain field ~Andersen/Pouget
- then contract to body space

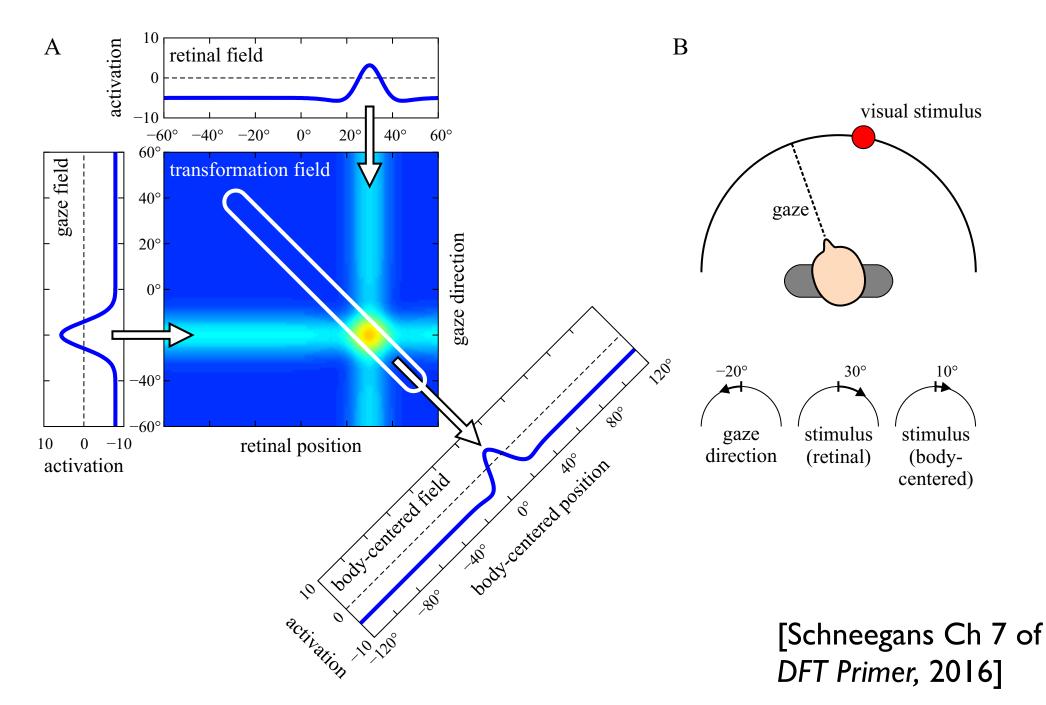




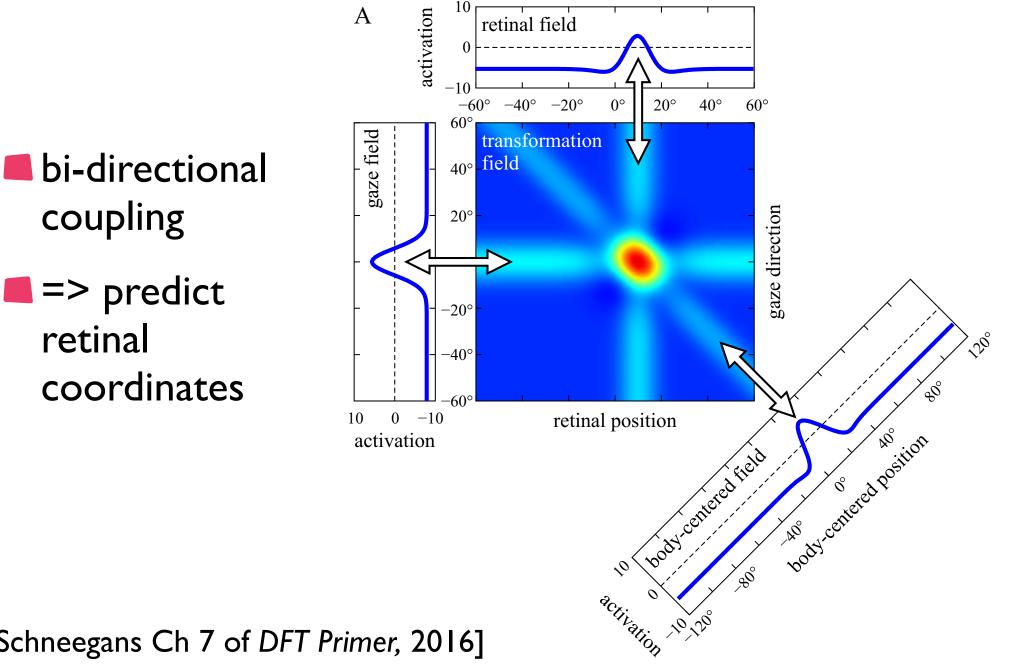




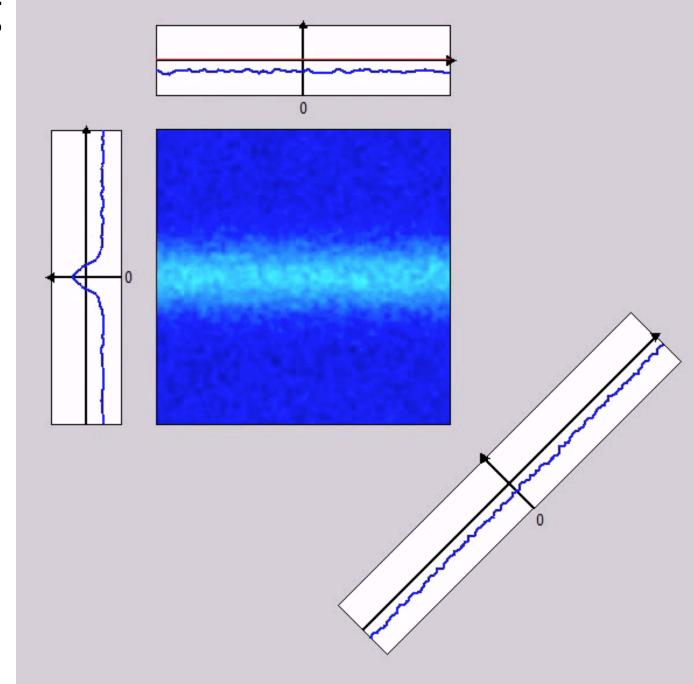




Retina => body space



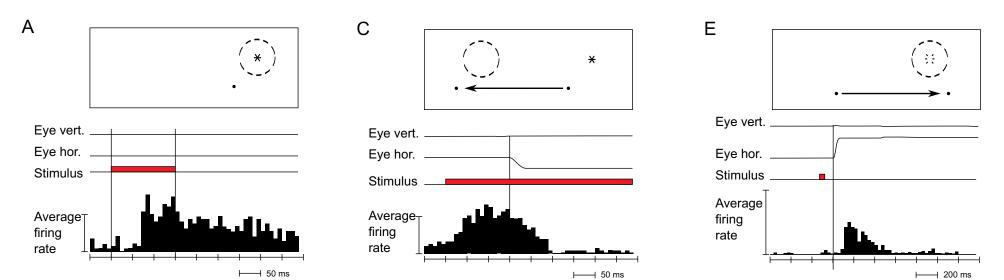
Spatial remapping during saccades



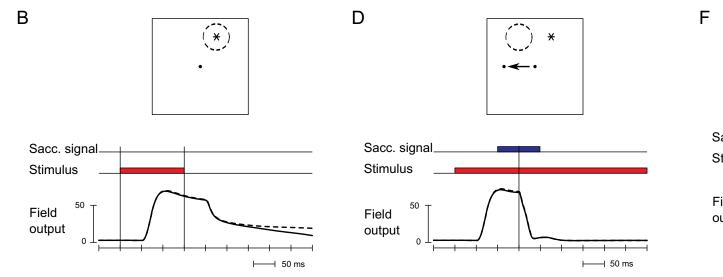
[Schneegans, Schöner Biological Cybernetics 2012]

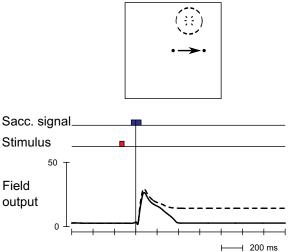
Accounts for predictive updating

[neural data: Duhamel, Colby, Goldberg, 1992, LIP]



[model: Schneegans, Schöner Biological Cybernetics 2012]

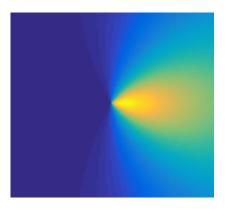




Coordinate transforms for cognition

"green to the right of red"

reference target



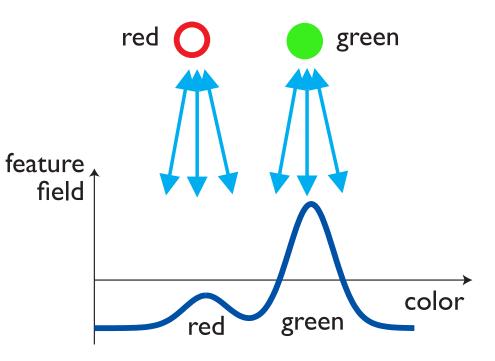
to perceptually ground relations/actions etc

use relational concepts that have patterned coupling

[Sabinasz, Richter, Schöner: Cog Neurodyn 2023]

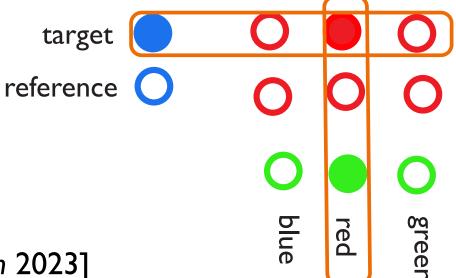
Role-filler binding

color concepts... grounded in feature fields



- roles: reference, target, agent, tool, ...

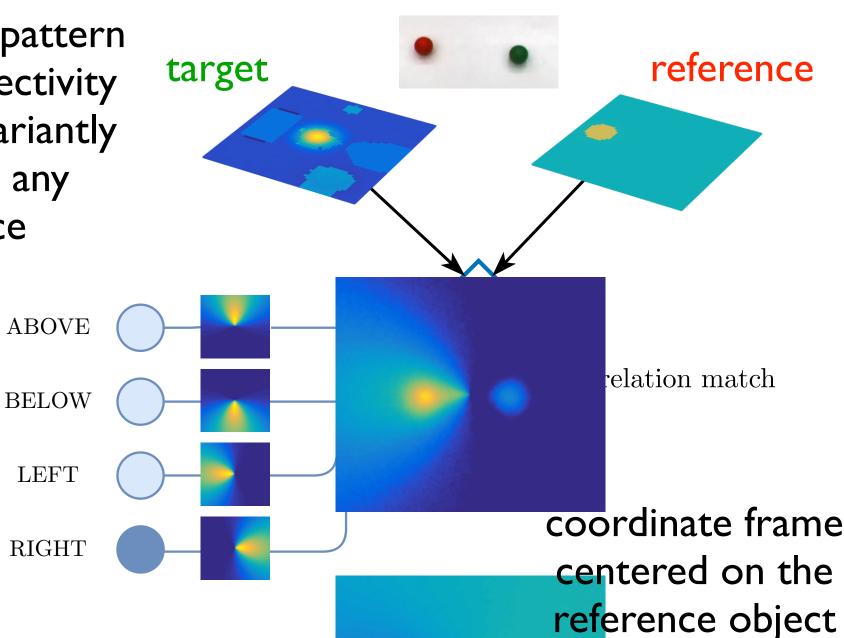
 - joint representation of roles and concepts



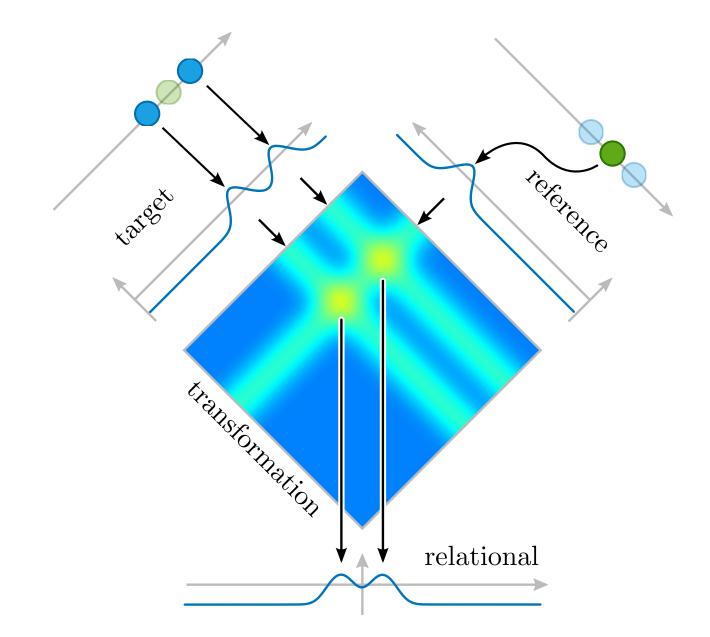
[Sabinasz, Richter, Schöner: Cog Neurodyn 2023]

Coordinate transforms for cognition "green to the right of red"

a single pattern of connectivity may invariantly apply to any reference objects



=>critical role of coordinate transforms for higher cognition



[Sabinasz, Richter, Schöner: Cog Neurodyn 2023]

Coordinate transforms and binding through space

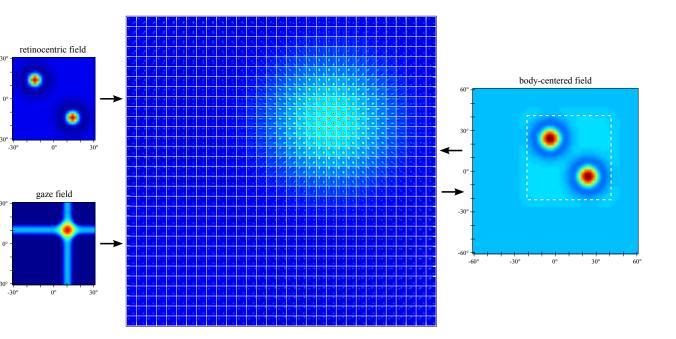
- to coordinate transform feature fields...
- do we need a joint representation of each spacefeature field with the transforming dimension?

No!

- coordinate transform space only!
- transport the feature values by binding through space!

[Schneegans, Schöner, 2012]

Coordinate transforms and binding through space



coordinate transform space only!

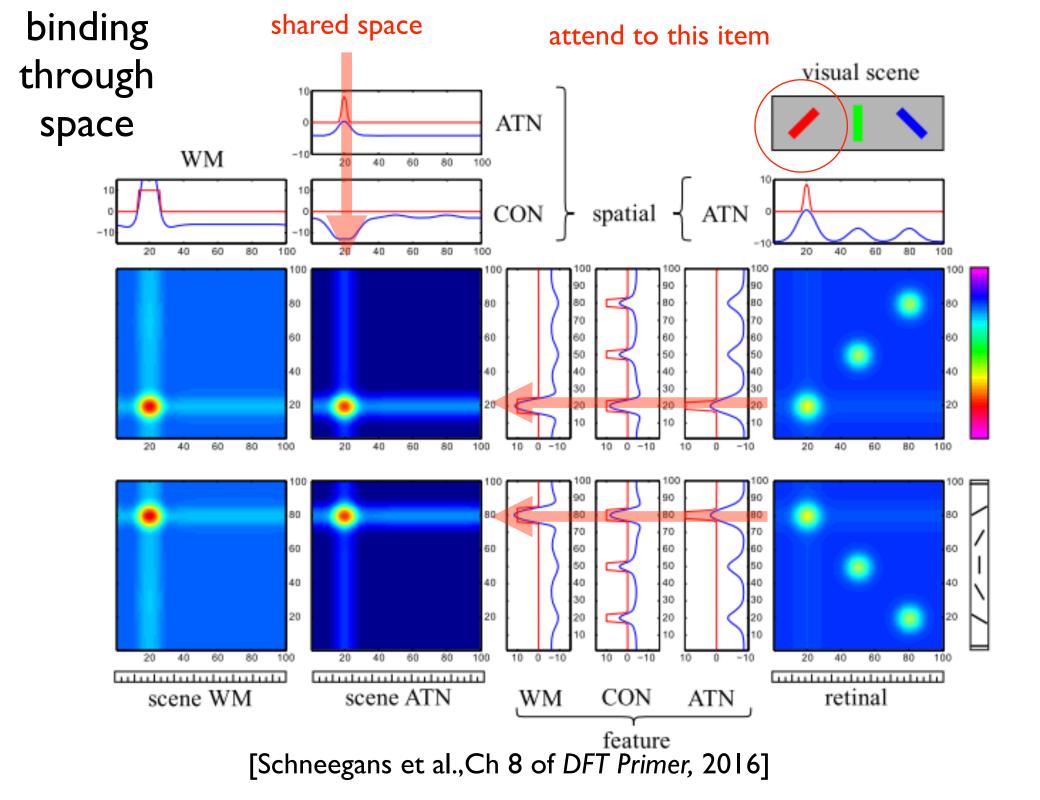
transport the feature values by binding through space!

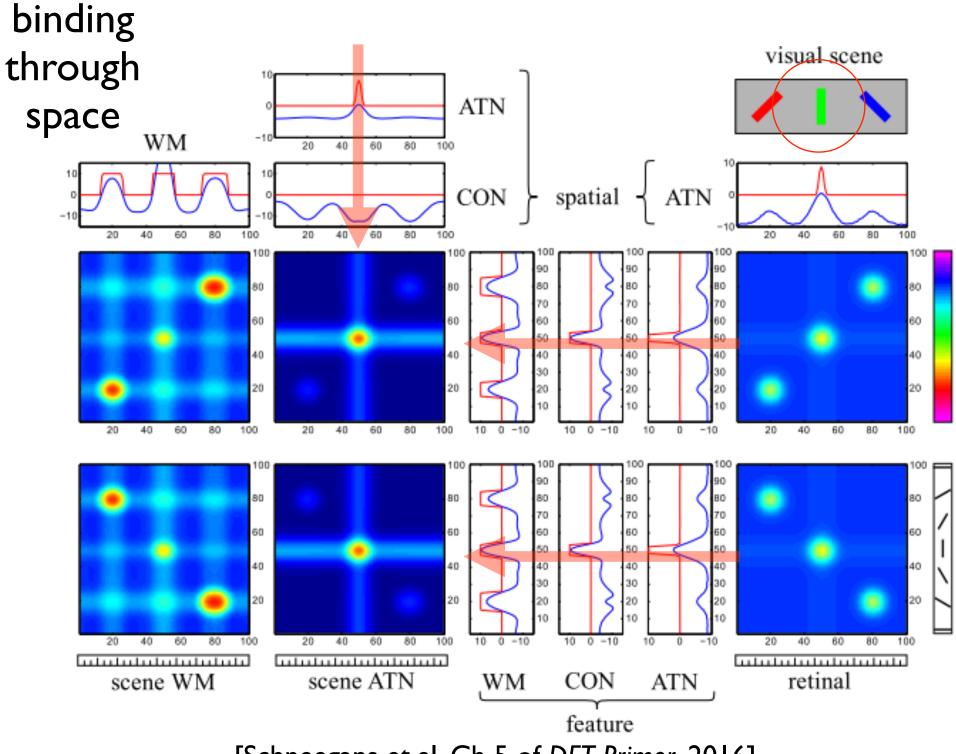
[Schneegans, Schöner, 2012]

Coordinate transforms and binding through space

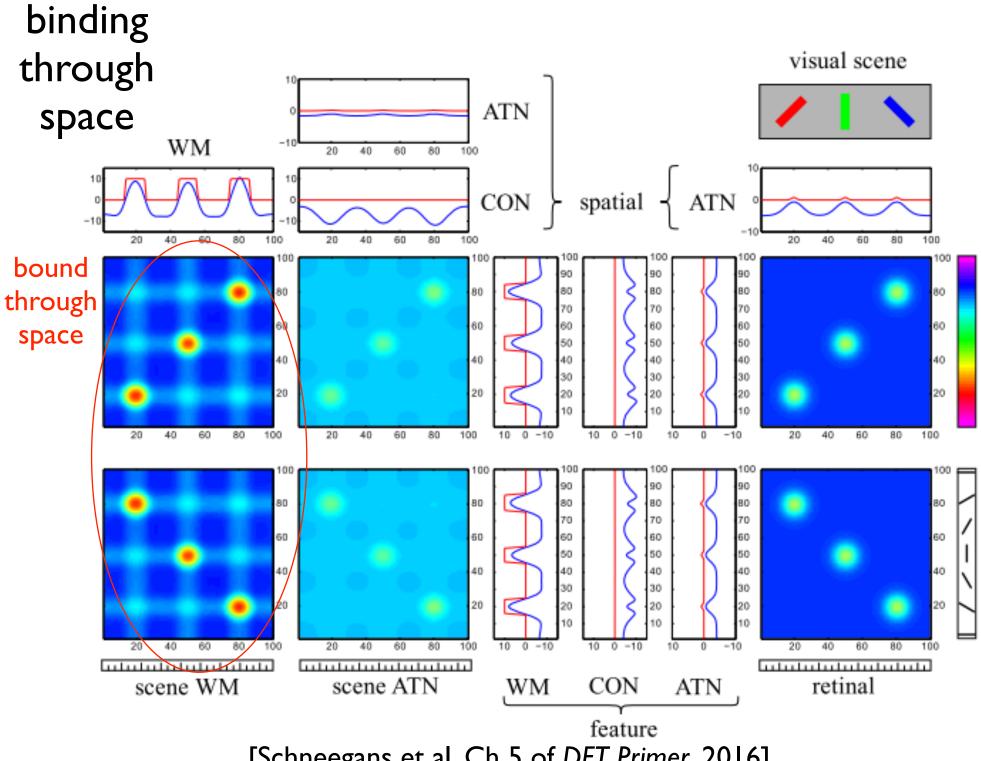
- => binding through space (and the attentional bottleneck this implies) radically simplifies coordinate transforms
- parietal cortex (where gain fields are) may do coordinate transforms for every feature/category representation!

[Schneegans, Schöner, 2012]

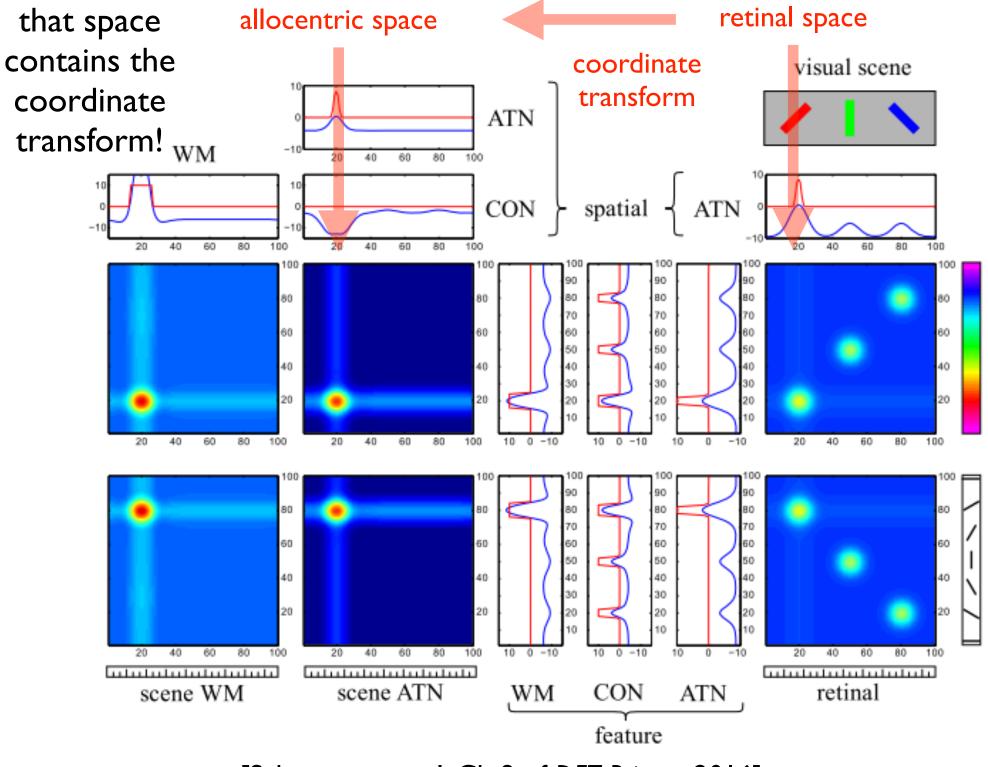




[Schneegans et al., Ch 5 of DFT Primer, 2016]



[Schneegans et al., Ch 5 of DFT Primer, 2016]



[Schneegans et al., Ch 8 of DFT Primer, 2016]

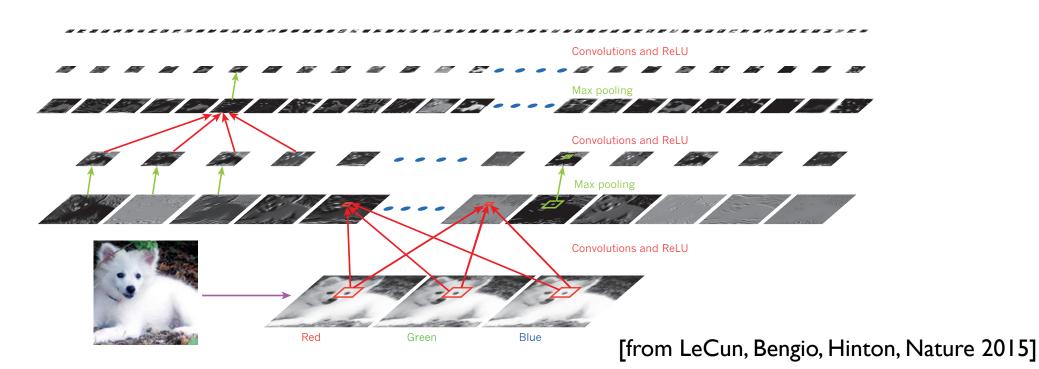
Roadmap Foundations 2: Space-time coupling

Background: different notions of binding
Joint representations and coupling patterns
Binding through space/ordinal dimension
Coordinate transforms

Is there a binding problem for DNN?

Image: Image:

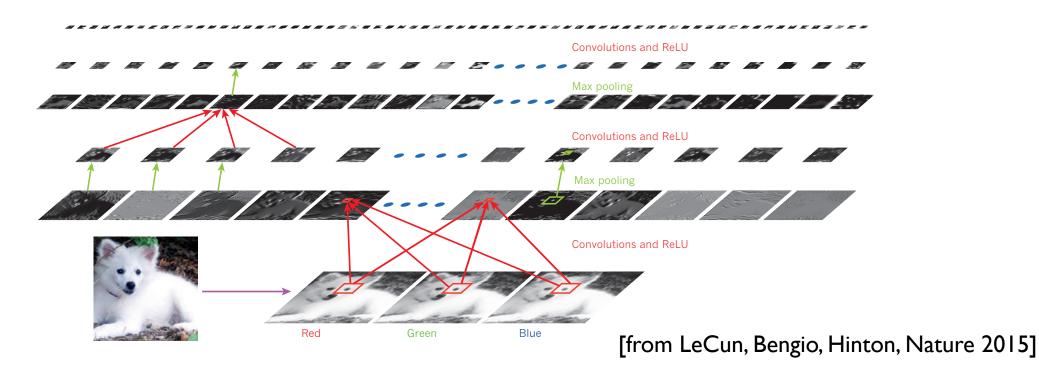
complex learned features are represented jointly distributed across a DNN.... hidden layers



Is there a binding problem for DNN?

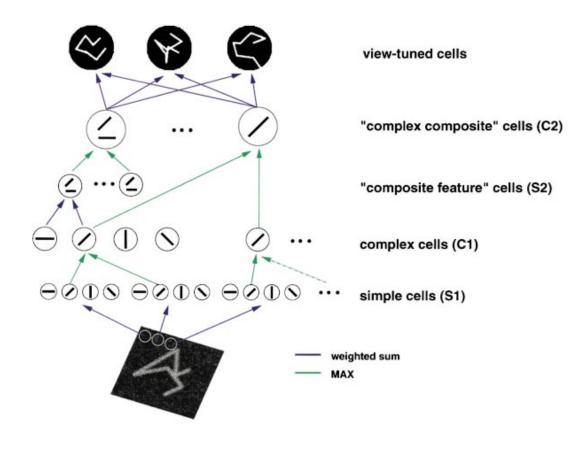
=> need the relevant patterns of connectivity across the visual array (done by weight sharing)

e.g. Fei-Fei Li et al for relations...



Is there a binding problem for DNN?

binding by joint representation is not flexible!



[Poggio, 1999]

next lectures:

sequence generation

grounding conceptual structure

analogy

itentionality